Burada, endojen RNA bağlayıcı siteleri veya RNA: protein (RNP) kompleksler “ayak izleri” mammalin hücrelerden zenginleştirmek için bir protokol sunuyoruz. Bu yaklaşım RNP alt paketleri iki immünoprecipitations içerir ve bu nedenle tandem RNA immünopresipitasyon dubbed (ripit).
Tandem içinde RNA immünopyemek (RIPiT) RNA: protein (RNP) kompleksinde bir çift proteinin RNA ayak izlerini zenginleştirmeye yarayan bir yöntemdir. RipIt iki arıtma adımlarını kullanır. İlk olarak, etiketli bir RNP altbirim immünoprecipitation hafif RNase sindirim ve sonraki Non-denaturing benzeşme elüsyon tarafından izlenir. Başka bir RNP altbirim ikinci bir immünoprecipitation tanımlanmış bir kompleks zenginleştirme sağlar. Rnas ve proteinlerin denatüre bir elüsyonu takiben, RNA ayak izleri yüksek verim DNA sıralı kütüphaneler dönüştürülür. Daha popüler ultraviyole aksine (UV) çapraz immünoprecipitation takip (CLIP) yaklaşım RBP bağlama siteleri zenginleştirin, ripit UV-çapraz bağımsız. Bu nedenle RIPiT RNA interactomunda mevcut olan çok sayıda proteinlere uygulanabilir ve bunun ötesinde RNA Yönetmeliği için önemlidir, ancak RNA veya UV-Crosslink ‘ e doğrudan temas etmez. RipIt ‘deki iki arıtma adımları, başka bir cofactor ile ortaklık içinde ilgi gören bir protein olan bağlayıcı siteleri tanımlamanın ek bir avantajı sağlar. Çift arıtma stratejisi de arka plan sınırlandırarak sinyali artırmak için hizmet vermektedir. Burada, RIPiT ‘i gerçekleştirmek ve yalıtılmış RNA ayak izlerinden yüksek verimlilik sıralaması kitaplıkları oluşturmak için adım akıllı bir prosedür sağlıyoruz. Ayrıca, RIPiT ‘in avantajları ve uygulamalarını özetlemektedir ve bazı sınırlamalarını tartışırız.
Hücreler içinde RNA, RNA: protein kompleksler (RNPs) oluşturmak için proteinler ile kompleks içinde bulunmaktadır. RNPs RNA bağlayıcı proteinleri (RBPs, doğrudan RNA bağlamak olanlar) etrafında monte edilir ama aynı zamanda olmayan RBPs (Bu bind RBPs ama RNA değil) oluşur ve genellikle doğada dinamik. Rbps ve onların Kofaktörler düzenleyici işlevleri yürütmek için rnps içinde topluca işlev. Örneğin, anlamsız aracılı mRNA çürüğü (NMD) yolu, UPF proteinleri (UPF1, UPF2, ve UPF3b) zamanından önce sonlandırılmış ribosome tanır. UPF proteinlerinin her biri RNA ‘ya bağlanabilirler, ancak sadece aktif bir NMD kompleksinin formaya başladığı zaman birlikte birleştiriyorlar. Bu kompleks içinde, UPF1 daha fazla olmayan bir RBP SMG1 tarafından fosforilasyon tarafından aktive edilir, ve böyle UPF1 aktivasyon sonunda mRNA çürüme İndükleme faktörleri1,2işe yol açar. Bu örnekte, rbps işe alma ve NMD tetikleyen RNP kompleks aktivasyonu için RBP Kofaktörler gerektirir. Ancak RNPs ‘nin başka bir özelliği de kompozisyonlu heterojenliği. Farklı E, A, B veya C kompleksler içinde bulunan spliceosome düşünün. Farklı spliceosome kompleksleri çakışan ve farklı proteinlere sahiptir3. RNP fonksiyonlarını incelemek için, Rnas ‘ın bir RBP ve ilişkili proteinlerle bağlı olduğu aydınlatmak önemlidir. Farklı avantajları ve dezavantajları4,5,6,7olan her yaklaşımla, bunu başarmak için birçok yöntem var.
RBP bağlayıcı siteleri tanımlamak için yaygın popüler Yöntemler-çapraz bağlama immünoprecipitation (CLıP) ve çeşitli varyasyonları izledi-ultraviyole güveniyor (UV) RNA için bir RBP Crosslink ışık,8. Ancak bu, RNPs içinde RNA ‘ya doğrudan başvurmayan RBPs için etkili bir yaklaşım değildir. Burada, RNA bağlayıcı sitelerini izole etmek ve tanımlamak için RBPs ve RBPs olmayan benzer alternatif bir yaklaşım açıklanmaktadır. Bu yaklaşım tandem (ripit) RNA immünoprecipitation, tek bir arıtma (Şekil 1)9,10ile karşılaştırıldığında daha yüksek özgüllük elde etmenize yardımcı olan iki immünopyemek adımları oluşur. Bireysel immünopresipitasyon (IP) adımları klip ile karşılaştırıldığında daha düşük bir katı olarak gerçekleştirilebilir gibi, RipIt immünoprecipitation sırasında güçlü deterjanlar varlığına dayanabilir antikorların mevcudiyeti bağlı değildir. RIPiT ‘in en eşsiz avantajı, iki farklı proteini iki arıtma adımında hedefleme yeteneğidir; Bu, diğer benzer kompleksleri11komkonumlu farklı bir RNP kompleksi zenginleştirmek için güçlü bir yol sağlar.
RipIt prosedürünü küçük varyasyonlar RNP zenginleştirme daha da artırabilir. Örneğin, RNPs içindeki bazı RNA-protein veya protein-protein etkileşimleri geçici ve bu tür kompleksleri ayak izlerini verimli bir şekilde arındırmak zor olabilir. Bu tür etkileşimleri stabilize etmek için, RNPs hücre liziz ve RIPiT öncesinde formaldehit içeren hücreler arasında çapraz bağlanabilir. Örneğin, eXoN kavşak kompleksi (EJC) çekirdek faktörü, EIF4AIII ve EJC demontaj faktörü arasında zayıf bir etkileşimin, PYM12 ‘ nin daha fazla RNA ayak izi zenginleştirilmiş olması gibi formaldehit tedavisi ile stabilize edilebilir olduğunu gözlemledik (veri gösterilir). Hücre hasat ve RIPiT önce, hücreler de stabilize etmek veya belirli bir durumda RNPs zenginleştirmek için ilaçlar ile tedavi edilebilir. Örneğin, tercüme sırasında mRNA ‘dan çıkarılan proteinleri okurken (örn., EJC13, UPF114), puromisin, sikloheksimit veya harringtonin gibi çeviri inhibitörleriyle tedavi, RNAs üzerinde proteinler.
RIPiT ‘ten kurtarılan RNA miktarı genellikle düşüktür (0.5-10 pmoles, i.e., 10-250 ng RNA, 75 NT ortalama RNA uzunluğunu dikkate alınarak). Bunun birincil nedeni, belirli bir proteinin sadece küçük bir kısmını RNPs içindeki diğer proteinler ile karmaşık mevcut olduğu (herhangi bir “ücretsiz” protein ilk adımda ıp’ed ikinci IP sırasında kaybolur). Bu RNA ‘dan RNA-Seq kütüphaneleri oluşturmak için, Ayrıca burada daha önce yayımlanan protokolün bu kadar düşük RNA girişleri için uygun bir uyarlamasını özetlemektedir15,16 (Şekil 2), hangi verir yüksek verimlilik sıralaması hazır örnekleri 3 Gün.
Biz burada bazı önemli hususlar başarıyla RIPiT gerçekleştirmek için tartışmak. Her şeyden önce, her adımda mümkün olan en yüksek verimliliği elde etmek için bireysel IPS optimize edilmelidir. Burada açıklanan hücre giriş sayısı için Flag agaroz boncuk miktarı test ettiğimiz çeşitli proteinler için sağlam olduğu kanıtlanmıştır. Ortak proteinlerin sadece küçük bir kısmı olarak bayrak proteini ile Co-immunoprecip, etkili ikinci IP için gerekli antikor miktarı genellikle düşüktü…
The authors have nothing to disclose.
Bu çalışma NıH Grant GM120209 (GS) tarafından destekleniyordu. Yazarlar, Hizmetleri için OSUCCC Genomics Shared Resources Core ‘a teşekkür ederler (CCC destek Grant NCı P30 CA16058).
Anti-FLAG Affinity Gel | Sigma | A2220 | |
ATP, [γ-32P]- 3000Ci/mmol 10mCi/ml EasyTide, 250µCi | PerkinElmer | BLU502A250UC | |
BD Disposable Syringes with Luer-Lok Tips (200) | Fisher | 14-823-435 | |
Betaine 5M | Sigma | B0300 | |
biotin-dATP | TriLink | N-5002 | |
biotin-dCTP | Perkin Elmer | NEL540001EA | |
Branson Sonifier, Model SSE-1 | Branson | ||
CircLigase I | VWR | 76081-606 | ssDNA ligase I |
DMEM, High Glucose | ThermoFisher | 11995-065 | |
DNA load buffer NEB | NEB | ||
Dynabeads Protein A | LifeTech | 10002D | |
Flp-In-T-REx 293 Cell Line | ThermoFisher | R78007 | |
GeneRuler Low Range DNA Ladder | ThermoScientific | FERSM1203 | |
Hygromycin B | ThermoFisher | 10687010 | |
Mini-PROTEAN TBE Gel 10 well | Bio-Rad | 4565013 | |
Mini-PROTEAN TBE-Urea Gel | Bio-Rad | 4566033 | |
miRCAT-33 adapter 5′-TGGAATTCTCGGGTGCCAAGGddC-3′ | Any | this protocol is only compatible with the Illumina sequencing platform | |
Mirus transIT-X2 transfection reagent | Mirus | MIR 6004 | |
Mth RNA ligase | NEB | E2610S | |
PE1.0 5′-AATGATACGGCGACCACCGAGATCTACACT CTTTCCCTACACGACGCTCTTCCGATC*T-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
PE2.0 5′-CAAGCAGAAGACGGCATACGAGATCGGTCTC GGCATTCCTGCTGAACCGCTCTTCCGATC*T-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
Phenol/Chloroform/Isoamyl Alcohol (25:24:1, pH 6.7, 100ml) | Fisher | BP1752I-100 | |
Purple Gel Loading Dye (6x) | NEB | NEB #7025 | |
Q5 DNA Polymerase | NEB | M0491S/L | |
RNase I, E. coli, 1000 units | Eppicenter | N6901K | |
SPIN-X column | Corning | CLS8160-24EA | |
Streptavidin beads | ThermoFisher | 60210 | |
Superscript III (SSIII) | ThermoScientific | 18080044 | reverse transcriptase enzyme |
SybrGold | ThermoFisher | S11494 | gold nucleic acid gel stain |
T4 Polynucleotide Kinase-2500U | NEB | M0201L | |
T4RNL2 Tr. K227Q | NEB | M0351S | |
Tetracycline | Sigma | 87128 | |
Thermostable 5´ App DNA/RNA Ligase | NEB | M0319S | |
TruSeq_SE1 5′-pGGCACTANNNNNAGATCGGAAGA GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE10 5′-pGGTGTTCNNNNNAGATCGGAAG AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE11 5′-pGGTAAGTNNNNNAGATCGGAA GAGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE12 5′-pGGAGATGNNNNNAGATCGGAAGA GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE2 5′-pGGGTAGCNNNNNAGATCGGAAGAG CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE35′-pGGTCGATNNNNNAGATCGGAAG AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE4 5′-pGGCCTCGNNNNNAGATCGGAAGA GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE5 5′-pGGTGACANNNNNAGATCGGAAGA GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE6 5′-pGGTAGACNNNNNAGATCGGAAGAG CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTTC CGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE7 5′-pGGGCCCTNNNNNAGATCGGAAG AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCT TCCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE8 5′-pGGATCGGNNNNNAGATCGGAAGAG CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTT CCGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
TruSeq_SE9 5′-pGGACTGANNNNNAGATCGGAAGAG CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTTC CGATCTCCTTGGCACCCGAGAATTCCA-3′ |
Any | this protocol is only compatible with the Illumina sequencing platform | |
Typhoon 5 Bimolecular Imager | GE Healthcare Life Science | 29187191 |