Эта статья содержит набор протоколов для развития человека индуцированных плюрипотентных стволовых клеток полученных кардиомиоцитов (hiPSC-CM) сетей культивируется на многовеллированных meA пластин для обратимого электропората клеточной мембраны для действия потенциальных измерений. Записи с высокой пропускной прикладом получаются с одних и тех же клеточных сайтов неоднократно в течение нескольких дней.
Скрининг сердечной безопасности имеет первостепенное значение для открытия лекарственных средств и терапии. Таким образом, разработка новых высокопроизводительных электрофизиологических подходов для хиПС-производных кардиомиоцитов (hiPSC-CM) препараты очень необходимы для эффективного тестирования на наркотики. Хотя мультиэлектродные массивы (МЭА) часто используются для полевых потенциальных измерений возбудимых ячеек, недавняя публикация Джоши-Мукерджи и его коллег описала и подтвердила его применение для периодических записей потенциала действий (AP) от той же подготовки hiPSC-CM в течение нескольких дней. Цель здесь заключается в предоставлении подробных пошаговых методов для посева CMs и для измерения волн AP с помощью электропорации с высокой точностью и временным разрешением 1 кв. Этот подход направлен на решение проблемы отсутствия простой в использовании методологии для получения внутриклеточного доступа к измерениям ВЫСОКОй пропускной способности AP для надежных электрофизиологических исследований. Подробное рабочее течение и методы покрытия hiPSC-CMs на многовеллированных пластинах MEA обсуждаются, подчеркивая критические шаги, где это уместно. Кроме того, специально созданный сценарий MATLAB для быстрой обработки данных, извлечения и анализа сообщается для всестороннего исследования анализа формы волны для количественной оценки тонких различий в морфологии для различных параметров продолжительности AP, вовлеченных в аритмии и кардиотоксичности.
Человеческие индуцированные плюрипотентные кардиомиоциты стволовой клетки (hiPSC-CMs)являются золотым стандартом для все большего числа лабораторий 1,2,3,4,5,6 ,7,8,9,10. Избиение эмбриональных тел11,12,13 и монослой3,7,10,11,12, 13,14,15,16,17 дифференциации являются предпочтительными методами для производства кардиомиоцитов и мультиэлектродный массив (MEA) стал общим модальностью для мониторинга электродинамики этих сетей18,19,20. В то время как параметры, которые могут быть извлечены из полевых потенциалов (FPs), таких как скорость избиения, амплитуда, продолжительность и интервалы RR являются базовыми электрофизиологическими реакциями спонтанно избиение монослой18,21, 22,23, действия потенциал (AP) компонентов, лежащих в основе этих внеклеточных сигналов FP трудно экстраполировать24. Наша недавняя публикация об открытии применения MEAs для прямых периодических измерений AP является доказательством методологии для образцовых внутриклеточных AP с помощью обширного анализа волн на различных фазах реполяризации по нескольким партии hiPSC полученных кардиомиоцитов сетей3. В исследовании мы показали, что доставка электропоравливых импульсов в сети кардиомиоцитов, полученных из hiPSC, обеспечивает внутриклеточный доступ к записям AP. Эти переходные записи AP зависят от трансмембранных потенциальных восстановления наблюдается через травмы сайте3,25,26. Waveforms, записанные через MEA и патч-зажим в нашем исследовании показали аналогичные морфологии AP, таким образом, проверки надежности подхода3.
Несколько лабораторий сообщили измерения APs из различных электрогенных клеток с использованием пользовательских MEAs18,21,26,27,28,29, 30, но надежность использования MEA для последовательных и периодических измерений AP не была оценена. В настоящее время, золотой стандарт патч-зажим техника ограничивается терминалзаписи7,31 в то время как, MEA основе AP измерения являются переходными и, следовательно, может быть проведена несколько раз на той же ячейке. Мы также показываем, что можно легко записывать высококачественные сигналы AP в диапазоне милливольт, требующих минимальной фильтрации. Поэтому исследователи могут проводить не только острые, но и хронические исследования наркотиков в тех же препаратах с использованием MEAs. Кроме того, эта технология позволяет одновременное измерение FP /AP генерации электро-биом библиотек в короткий период времени. Учитывая растущий акцент на прогнозирование аритмии и связанных с наркотиками кардиотоксичности24,32,33,34,35, интеграция AP измерения подходы повысят безопасность лекарственных средств и оценку эффективности.
Здесь мы представляем протоколы для 1) предварительное покрытие криоконсервированных hiPSC-CMs для созревания, 2) диссоциации и покрытия hiPSC-CMs на multiwell MEAs, 3) запись FPs и APs от сетей hiPSC-CM, 4) сегментации и извлечения данных для анализа, и 5) восстановление массивов для многократного повторного использования. Каждый шаг был оптимизирован, подчеркивая критические шаги, где бы это ни было уместно. Обсуждаются требования к клеточной привязанности для обеспечения избиения синцитиального монослойного и процедуры многофункционального восстановления МЕА для повторяющихся электрофизиологических исследований. Наконец, пользовательский графический интерфейс, разработанный в лаборатории, представлен для извлечения сигналов AP, обеспечения качества и обработки рабочего процесса для количественной оценки и анализа параметров AP.
На протяжении многих лет применение МСП ограничивалось проведением измерений FP возбудимых клеток для изучения их электрофизиологических свойств36,37,38,39. Лишь несколько групп сообщили AP следы от электрогенных клеток с использованием пользовательских MEA на основе технологии18,29,30. Однако эти подходы не были исследованы на предмет повторных записей из одних и тех же препаратов. Мы разработали инновационную и точную методологию для изучения APs с одного и того же сайта ячейки в течение нескольких дней в нескольких сетях hiPSC-CM одновременно3. В нашем опубликованном исследовании, многовелл микро-золото MEA платформа была использована для создания AP волновой библиотеки из нескольких партий hiPSC-CM культур с высокой точностью и с временным разрешением 1 х. Описанный здесь протокол объясняет посев hiPSC-CMs на массиве для эффективного развития синцитиальных сетей CM для высокопроизводительных записей AP. Несколько критических шагов в протоколе: 1) производство нескольких высокой чистоты партий качества контролируемых CMs для криоконсервации банковской, 2) весьма жизнеспособным после оттепели CMs для предварительного покрытия и созревания, 3) лечение многоскважины MEA пластины для CM посева, 4) hiPSC-CM культуры диссоциации на 30 дней после дифференциации для MEA покрытие, и 5) восстановление MEAs для многократного повторного использования.
Важно отметить, что разновидность пакетных партий в дифференциации hiPSC может повлиять на экспериментальные результаты. Монослойный метод дифференциации был оптимизирован в доме длявысокопроцентного производства кардиомиоцитов 3,40. Анализ FACS маркеров MLC2v и TNNT2 наших культур демонстрирует 90% желудочково-подобный фенотип3. Эти контролируемые качеством культуры криоконсервированы для экспериментальных исследований. Нынешние подходы дифференциации дают неоднородную смесь узловых, предсердий и желудочков, как клетки3,16,17,41. Таким образом, стратегии, используемые для обогащения популяции подтипа СМ, могут еще больше улучшить специфику культур. Кроме того, для повышения их созревания могут быть использованы подходы к тканевой инженерии. Предложенные здесь методы могут быть легко реализованы для других источников CM.
Волны AP, записанные с помощью MEA, были аналогичны тем, которые были записаны в сетях кардиомиоцитов оптическим картированием42,43, дополнительными оксидами металла полупроводниковой основе MEA18,21, и смоделированные AP с помощью записей FP20. Для решения механизма измерений AP через MEA Hai и Spira25 продемонстрировали, что электропор-электродный интерфейс имитирует установленную острое стекло микроэлектродной техники. Тем не менее, потенциал мембраны покоя и истинные значения амплитуды в нашем исследовании не могут быть установлены, учитывая, что электропор-электродный интерфейс в системах МЦа не откалиброван, и что амплитуда является функцией чувствительности и разрешения Техника. Наш подход разделяет аналогичные ограничения оптического картирования, когда дело доходит до амплитуды AP.
Многофункциональные MEA основе FP / AP чтения сообщили здесь открыть новые возможности для оценки безопасности лекарственных средств. Хотя спонтанно, эти hiPSC-CM монослой бить с постоянной скоростью. Анализ параметров APD в нескольких сетях дает представление об электрической неоднородности(рисунок 13). Тем не менее, всеобъемлющий анализ реституции APD должен включать предыдущие диастолические интервалы. Кроме того, высококачественные волны AP, зарегистрированные с того же места клеток более 96 ч(рисунок 11B) является первым докладом для отслеживания мембранной электродинамики с течением времени, которые будут значения в развитии и в болезни.
Протокол, описанный здесь для количественной оценки параметров AP, может быть использован для генерации кривых реакции дозы для тестирования соединений. Как недавно сообщили Эдвардс и др.3, доза ответ норадреналина, изопротеренола и E 4031 построены для APD на различных фазах реполяризации. Опубликованное исследование продемонстрировал точность и надежность подхода к выявлению зависящих доза тонких изменений в волнах AP в режиме реального времени. Этот метод может быть легко расширен для других соединений или небольших библиотек молекул для понимания различных электрофизиологических реакций.
MeA основанный подход для измерений AP, представленный в этом исследовании, будет интересен не только электрофизиологам, но и клеточным биологам и модельерам в силико. Кроме того, записи FP/AP с одного и того же сайта клеток на hiPSC-CMs позволят исследователям в течение короткого периода времени создавать биоэлектрические библиотеки данных широкого спектра возбудимых сотовых сетей. Наличие этих ресурсов будет иметь важное значение для обнаружения наркотиков и моделирования заболеваний.
The authors have nothing to disclose.
Ни один
Accutase | Sigma Aldrich | A6964-100ML | cell dissociation solution |
Acquisition software | Multichannel Systems | Multiwell-Screen v 1.9.2.0 | |
B27 Supplement | ThermoFisher | 17504-044 | CM media supplement |
Converter software | Multichannel Systems | MultiChannel DataManager | |
DMEM/F12 | ThermoFisher | 11330-032 | |
D-PBS | ThermoFisher | 14190-250 | |
FBS | Fisher Scientific | SH3007103HI | |
Fibronectin | Sigma Aldrich | F1141-5MG | |
Geltrex | ThermoFisher | A1413202 | coating substrate |
Interface board | Multichannel Systems | MCS-IFB 3.0 Multiboot Interface Board | |
Multiwell MEA Plate | Multichannel Systems | 24W300/30G-288 | |
RPMI 1640 | ThermoFisher | 11875-093 | CM base medium |
Terg-a-zyme | Sigma Aldrich | Z273287-1EA | enzymatic detergent |
Transfer pipettes, individually wrapped | Fisher Scientific | 1371148 | |
Trypan Blue | Sigma Aldrich | T8154-100ML | |
Ultrapure sterile water | ThermoFisher | 10977-023 | |
6-well tissue-culture treated plates | Fisher Scientific | 08-772-1B |