Questo protocollo si concentra sull’identificazione delle proteine che si legano ai fosfati inositoli o fosforoparassiti. Utilizza la cromatografia di affinità con fosfati inositoli biotinylati o fosforostostodi che vengono immobilizzati tramite streptavidin a agarose o perline magnetiche. Le proteine leganti al fosfato o fosfoinosazione sono identificate da gonfiore occidentale o spettrometria di massa.
Fosfati inositoli e fosfoinossidi regolano diversi processi cellulari negli eucarioti, tra cui l’espressione genica, il traffico di vescicle, la trasduzione del segnale, il metabolismo e lo sviluppo. Questi metaboliti svolgono questa attività regolatrice legandosi alle proteine, cambiando così la conformazione proteica, l’attività catalitica e/o le interazioni. Il metodo qui descritto utilizza la cromatografia di affinità accoppiata alla spettrometria di massa o al gonfiore occidentale per identificare le proteine che interagiscono con fosfati inositoli o fosfoinossidi. I fosfati inositoli o fosforosati sono etichettati chimicamente con biotina, che viene poi catturata tramite streptavidina coniugata ad agarose o perline magnetiche. Le proteine sono isolate dalla loro affinità di legame con il metabolita, poi eluite e identificate da spettrometria di massa o gonfiore occidentale. Il metodo ha un flusso di lavoro semplice, non radioattivo, privo di liposomi e personalizzabile, che supporta con precisione l’analisi dell’interazione tra proteine e metaboliti. Questo approccio può essere utilizzato in metodi di spettrometria di massa quantitativa senza etichetta o con elementi aminoacidi per identificare le interazioni proteina-metabolita in campioni biologici complessi o utilizzando proteine purificate. Questo protocollo è ottimizzato per l’analisi delle proteine di Trypanosoma brucei, ma può essere adattato ai relativi parassiti protozoi, lieviti o cellule mammiferi.
I fosfati inositoli (IP) e le fosfoinosti (PI) svolgono un ruolo centrale nella biologia degli eucarioti attraverso la regolazione dei processi cellulari come il controllo dell’espressione genica1,2,3, il traffico di vescicocchi 4, trasduzione del segnale5,6, metabolismo7,8,9, e lo sviluppo8,10. La funzione regolatoria di questi metaboliti deriva dalla loro capacità di interagire con le proteine e quindi regolare la funzione proteica. Al momento del legame da parte delle proteine, IP e PI possono alterare la conformazione proteica11, l’attività catalitica12o le interazioni13 e quindi influenzare la funzione cellulare. IP e PI sono distribuiti in più compartimenti subcellulari, come il nucleo2,3,14,15, reticolo endolasmico16,17, plasma membrana1 e citosol18, associati alle proteine3,19 o con RNA20.
La scissione del PI(4,5)P2 associato alla membrana dalla fosforaC determina il rilascio di Ins(1,4,5)P3, che può essere fosforilata o dephophorylated da kinasi IP e fosfoforasi, rispettivamente. Gli IP sono molecole solubili che possono legarsi alle proteine ed esercitare funzioni regolatorie. Ad esempio, Ins(1,4,5)P3 in metazoo può agire come un secondo messaggero legandosi ai recettori IP3, che induce i cambiamenti conformazionali del recettore e quindi il rilascio di Ca2, dai negozi intracellulari11. Ins(1,3,4,5)P4 si lega al complesso della deacetylase istone e regola l’assemblaggio e l’attività complesse di proteine13. Altri esempi di funzione regolatrice degli IP includono il controllo dell’organizzazione della cromatina21, il trasporto dell’RNA22,23, l’editing RNA24e la trascrizione1,2,3 . Al contrario, i PI sono spesso associati al reclutamento di proteine nella membrana plasmatica o nelle membrane dell’orgelli25. Tuttavia, una proprietà emergente delle PI è la capacità di associarsi alle proteine in un ambiente non-membranoso3,15,19,26. Questo è il caso del recettore nucleare fattore steroidogenico, che la funzione di controllo trascrizionale è regolata da PI(3,4,5)P319, e poli-A polimerasi che l’attività ezimatica è regolata da NUCLEAR PI(4,5)P226. Un ruolo normativo per IP e PI è stato dimostrato in molti organismi tra cui lievito22,27, cellule di mammiferi19,23, Drosophila10 e vermi28. Di significato è il ruolo di questi metaboliti nei trypanosomi, che si sono differenziati presto dal lignaggio eucarotico. Questi metaboliti svolgono un ruolo essenziale nel trypanosoma brucei controllo trascrizionale1,3, sviluppo8, biogenesi organelle e traffico proteico29,30 , 31 Milia , 32, e sono anche coinvolti nel controllo dello sviluppo e infezione nei patogeni T. cruzi33,34,35,Toxoplasma36 e Plasmodium 5 Del numero 3( , 37. Quindi, comprendere il ruolo degli IP e dei PI nei trypanosomi può aiutare a chiarire la nuova funzione biologica di queste molecole e a identificare nuovi bersagli farmacologici.
La specificità del legame di proteine e IP o PI dipende dalle proteine che interagiscono tra i domini e lo stato di fosforilazione dell’inositolo13,38, anche se le interazioni con la parte lipidica delle PI avvengono anche19. La varietà di IP e PI e la loro modifica di chinasi e fosfolenosi fornisce un meccanismo cellulare flessibile per controllare la funzione proteica che è influenzato dalla disponibilità e dall’abbondanza di metaboliti, dallo stato di fosforolalazione dell’inositolo e dalle proteine affinità di interazione1,3,13,38. Anche se alcuni domini proteici sono ben caratterizzati39,40,41, ad esempio, pleckstrin homology dominio42 e SPX (SYG1 /Pho81 /XPR1) domini43 ,44,45, alcune proteine interagiscono con IP o PI con meccanismi che rimangono sconosciuti. Ad esempio, la proteina repressore-attivatore 1 (RAP1) di T. brucei manca di domini di legame PI canonici, ma interagisce con PI(3,4,5)P3 e la trascrizione di controllo dei geni coinvolti nella variazione antigenica3. La cromatografia di affinità e l’analisi della spettrometria di massa delle proteine interagenti IP o PI da cellule tripitosomi, lievito o mammiferi hanno identificato diverse proteine senza domini di legame IP o PI noti8,46, 47. I dati suggeriscono ulteriori domini proteici non caratterizzati che si legano a questi metaboliti. Quindi, l’identificazione delle proteine che interagiscono con IP o PI può rivelare nuovi meccanismi di interazione proteina-metabolita e nuove funzioni regolatorie cellulari per queste piccole molecole.
Il metodo qui descritto utilizza la cromatografia di affinità accoppiata alla blotrotazione occidentale o alla spettrometria di massa per identificare le proteine che si legano a IP o PI. Esso utilizza IP biotinylati o PI che sono o cross-linked a streptavidin a perline di agarose o in alternativa, catturato tramite perline magnetiche coniugate streptavidin (Figura 1). Il metodo fornisce un flusso di lavoro semplice, sensibile, non radioattivo, privo di liposomi ed è adatto per rilevare il legame delle proteine da lismi cellulari o proteine purificate3 (Figura 2). Il metodo può essere utilizzato in una spettrometria di massa quantitativada 8,46 o accoppiato a una spettrometria di massa quantitativa con etichetta di aminoacidi47 per identificare proteine IP o PI-leganti da campioni biologici complessi. Quindi, questo metodo è un’alternativa ai pochi metodi disponibili per studiare l’interazione di IP o PI con proteine cellulari e aiuterà a comprendere la funzione regolatoria di questi metaboliti nei trypanosomi e forse in altri eucarioti.
L’identificazione di proteine che si legano a IP o PI è fondamentale per comprendere la funzione cellulare di questi metaboliti. La cromatografia di affinità abbinata alla spettrometria di massa o macchia occidentale offre l’opportunità di identificare le proteine interagenti IP o PI e quindi di ottenere informazioni sulla loro funzione regolatoria. IP o PI etichettati chimicamente [ad esempio, Ins(1,4,5)P3 chimicamente collegati alla biotina] e incrociati alle perline di agarose tramite streptavidina o catturati da p…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto dal Natural Sciences and Engineering Research Council del Canada (NSERC, RGPIN-2019-04658); NSERC Discovery Launch Supplemento per i ricercatori all’inizio della carriera (DGECR-2019-00081) e dalla McGill University.
Acetone | Sigma-Aldrich | 650501 | Ketone |
Acetonitrile | Sigma-Aldrich | 271004 | Solvent |
Ammonium bicarbonate | Sigma-Aldrich | A6141 | Inorganic salt |
Centrifuge Avanti J6-MI | Beckman Coulter | Avanti J6-MI | Centrifuge for large volumes (e.g., 1L) |
Centrifuge botles | Sigma-Aldrich | B1408 | Bottles for centrifugation of 1L of culture |
Control Beads | Echelon | P-B000-1ml | Affinity chromatography reagent – control |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Sugar, Added in PBS to keep cells viable |
Dithiothreitol (DTT) | Bio-Rad | 1610610 | Reducing agent |
Dynabeads M-270 Streptavidin | ThermoFisher Scientific | 65305 | Streptavidin beads for binding to biotin ligands |
EDTA-free Protease Inhibitor Cocktail | Roche | 11836170001 | Protease inhibitors |
Electrophoresis running buffer | Bio-Rad | 1610732 | 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3 |
Falcon 15 mL Conical Centrifuge Tubes | Corning Life Sciences | 430052 | To centrifuge 10 mL cultures |
Formic acid | Sigma-Aldrich | 106526 | Acid |
Glycine | Sigma-Aldrich | G7126 | Amino acid |
HMI-9 cell culture medium | ThermoFisher Scientific | ME110145P1 | Cell culture medium for T. brucei bloodstream forms |
Imperial Protein Stain | ThermoFisher Scientific | 24615 | Coomassie staining for protein detection in SDS/PAGE |
Ins(1,4,5)P3 Beads | Echelon | Q-B0145-1ml | Affinity chromatography reagent |
Instant Nonfat Dry Milk | Thomas Scientific | C837M64 | Blocking reagent for Western blotting |
Iodoacetamide | Sigma-Aldrich | I6125 | Alkylating reagent for cysteine proteins or peptides |
Lab Rotator | Thomas Scientific | 1159Z92 | For binding assays |
LoBind Microcentrifuge Tubes | ThermoFisher Scientific | 13-698-793 | Low protein binding tubes for mass spectrometry |
Nonidet P-40 (Igepal CA-630) | Sigma-Aldrich | 21-3277 | Detergent |
PBS, pH 7.4 | ThermoFisher Scientific | 10010031 | Physiological buffer |
Peroxidase substrate for chemiluminescence | ThermoFisher Scientific | 32106 | Substrate for Western bloting detection of proteins |
PhosSTOP Phosphatase Inhibitor Cocktail Tablets | Roche | 4906845001 | Phosphatase inhibitors |
PI(3)P PIP Beads | Echelon | P-B003a-1ml | Affinity chromatography reagent |
PI(3,4)P2 PIP Beads | Echelon | P-B034a-1ml | Affinity chromatography reagent |
PI(3,4,5)P3 diC8 | Echelon | P-3908-1mg | Affinity chromatography reagent |
PI(3,4,5)P3 PIP Beads | Echelon | P-B345a-1ml | Affinity chromatography reagent |
PI(3,5)P2 PIP Beads | Echelon | P-B035a-1ml | Affinity chromatography reagent |
PI(4)P PIP Beads | Echelon | P-B004a-1ml | Affinity chromatography reagent |
PI(4,5)P2 diC8 | Echelon | P-4508-1mg | Affinity chromatography reagent |
PI(4,5)P2 PIP Beads | Echelon | P-B045a-1ml | Affinity chromatography reagent |
PI(5)P PIP Beads | Echelon | P-B005a-1ml | Affinity chromatography reagent |
Ponceau S solution | Sigma-Aldrich | P7170 | Protein staining (0.1% [w/v] in 5% acetic acid) |
Potassium hexacyanoferrate(III) | Sigma-Aldrich | 702587 | Potassium salt |
PtdIns PIP Beads | Echelon | P-B001-1ml | Affinity chromatography reagent |
PVDF Membrane | Bio-Rad | 1620177 | For Western blotting |
Refrigerated centrifuge | Eppendorf | 5910 R | Microcentrifuge for small volumes (e.g., 1.5 mL) |
Sodium dodecyl sulfate | Sigma-Aldrich | 862010 | Detergent |
Sodium thiosulfate | Sigma-Aldrich | 72049 | Chemical |
SpeedVac Vacuum Concentrators | ThermoFisher Scientific | SPD120-115 | Sample concentration (e.g., for mass spectrometry) |
T175 flasks for cell culture | ThermoFisher Scientific | 159910 | To grow 50 mL T. brucei culture |
Trypsin, Mass Spectrometry Grade | Promega | V5280 | Trypsin for protein digestion |
Urea | Sigma-Aldrich | U5128 | Denaturing reagent |
Vortex | Fisher Scientific | 02-215-418 | For mixing reactions |
Western blotting transfer buffer | Bio-Rad | 1610734 | 25 mM Tris, 192 mM glycine, pH 8.3 with 20% methanol |
Whatman 3 mm paper | Sigma-Aldrich | WHA3030861 | Paper for Wester transfer |
2-mercaptoethanol (14.2 M) | Bio-Rad | 1610710 | Reducing agent |
2x Laemmli Sample Buffer | Bio-Rad | 161-0737 | Protein loading buffer |
4–20% Mini-PROTEAN TGX Precast Protein Gels | Bio-Rad | 4561094 | Gel for protein electrophoresis |
4x Laemmli Sample Buffer | Bio-Rad | 161-0747 | Protein loading buffer |