Dieses Protokoll konzentriert sich auf die Identifizierung von Proteinen, die an Inositolphosphate oder Phosphoinositide binden. Es verwendet Affinitätschromatographie mit biotinylierten Inositolphosphaten oder Phosphoinositiden, die über Streptavidin zu Agarose oder magnetischen Perlen immobilisiert werden. Inositolphosphat oder Phosphoinositid-bindende Proteine werden durch western blotting oder Massenspektrometrie identifiziert.
Inositolphosphate und Phosphoinositide regulieren mehrere zelluläre Prozesse in Eukaryoten, einschließlich Genexpression, Vesikelhandel, Signaltransduktion, Stoffwechsel und Entwicklung. Diese Metaboliten führen diese regulatorische Aktivität durch Bindung an Proteine durch und verändern dadurch die Proteinkonformation, die katalytische Aktivität und/oder die Wechselwirkungen. Die hier beschriebene Methode verwendet Affinitätschromatographie gekoppelt mit Massenspektrometrie oder Western Blotting, um Proteine zu identifizieren, die mit Inositolphosphaten oder Phosphoinositiden interagieren. Inositolphosphate oder Phosphoinositide werden chemisch mit Biotin markiert, das dann über Streptavidin konjugiert zu Agarose oder magnetischen Perlen gefangen wird. Proteine werden durch ihre Affinität zur Bindung an den Metaboliten isoliert, dann eluiert und durch Massenspektrometrie oder Western Blotting identifiziert. Die Methode verfügt über einen einfachen Workflow, der empfindlich, nicht radioaktiv, liposomenfrei und anpassbar ist und die Analyse der Protein- und Metaboliteninteraktion präzise unterstützt. Dieser Ansatz kann in etikettenfreien oder in aminosäuremarkierten quantitativen Massenspektrometriemethoden verwendet werden, um Protein-Metabolit-Wechselwirkungen in komplexen biologischen Proben oder mit gereinigten Proteinen zu identifizieren. Dieses Protokoll ist für die Analyse von Proteinen aus Trypanosoma bruceioptimiert, kann aber an verwandte protozoische Parasiten, Hefe- oder Säugetierzellen angepasst werden.
Inositolphosphate (IPs) und Phosphoinositide (PIs) spielen eine zentrale Rolle in der Eukaryotenbiologie durch die Regulierung zellulärer Prozesse wie die Kontrolle der Genexpression1,2,3, Vesikelhandel 4, Signaltransduktion5,6, Stoffwechsel7,8,9, und Entwicklung8,10. Die regulatorische Funktion dieser Metaboliten ergibt sich aus ihrer Fähigkeit, mit Proteinen zu interagieren und damit die Proteinfunktion zu regulieren. Bei Bindung durch Proteine können IPs und PIs die Proteinkonformation11, die katalytische Aktivität12oder Wechselwirkungen13 verändern und somit die zelluläre Funktion beeinflussen. IPs und PIs sind in mehreren subzellulären Kompartimenten verteilt, wie z. B. Kern2,3,14,15, endoplasmatisches Retikulum16,17, Plasma Membran1 und Cytosol18, entweder verbunden mit Proteinen3,19 oder mit RNAs20.
Die Spaltung des membranassoziierten PI(4,5)P2 durch Phospholipase C führt zur Freisetzung von Ins(1,4,5)P3, das durch IP-Kinäsen bzw. Phosphatasen phosphoryliert oder dephosphoryliert werden kann. IPs sind lösliche Moleküle, die an Proteine binden und regulatorische Funktionen ausüben können. Zum Beispiel kann Ins(1,4,5)P3 in Metazoan als zweiter Botenstoff durch Bindung an IP3-Rezeptoren fungieren, was Rezeptor-Konformationsänderungen induziert und somit Ca2+ aus intrazellulären Speichern freigibt11. Ins(1,3,4,5)P4 bindet an den Histon-Deacetylase-Komplex und reguliert die Proteinkomplex-Montage und -Aktivität13. Weitere Beispiele für iPs Regulatorische Funktion sind die Kontrolle der Chromatin-Organisation21, RNA-Transport22,23, RNA-Editing24und Transkription1,2,3 . Im Gegensatz dazu werden PIs oft mit der Rekrutierung von Proteinen an die Plasmamembran oder Organelle Membranen25assoziiert. Eine neu entstehende Eigenschaft von PIs ist jedoch die Fähigkeit, mit Proteinen in einer nicht-membranösen Umgebungzuassoziieren 3,15,19,26. Dies ist der Fall des steroidogenen Kernrezeptors, dessen Transkriptionskontrollfunktion durch PI(3,4,5)P319reguliert wird, und Poly-A-Polymerase, deren enzymatische Aktivität durch kerntechnische PI(4,5)P226reguliert wird. Eine regulierende Rolle für IPs und PIs wurde in vielen Organismen gezeigt, einschließlich Hefe22,27, Säugetierzellen19,23, Drosophila10 und Würmer28. Von Bedeutung ist die Rolle dieser Metaboliten bei Trypanosomen, die früh von der eukaryotischen Abstammung abwichen. Diese Metaboliten spielen eine wesentliche Rolle bei Trypanosoma brucei Transkriptionskontrolle1,3, Entwicklung8, Organelle Biogenese und Proteinverkehr29,30 , 31 , 32, und sind auch an der Kontrolle der Entwicklung und Infektion in den Erregern T. cruzi33,34,35,Toxoplasma36 und Plasmodium beteiligt 5 , 37. Daher kann das Verständnis der Rolle von IPs und PIs bei Trypanosomen dazu beitragen, neue biologische Funktionen für diese Moleküle aufzuklären und neue Wirkstoffziele zu identifizieren.
Die Spezifität von Protein- und IP- oder PI-Bindung hängt von Protein-Interagierenden Domänen und dem Phosphorylierungszustand des Inositols13,38ab, obwohl Wechselwirkungen mit dem Lipidteil von PIs ebenfalls 19 auftreten. Die Vielfalt der IPs und PIs und ihre modifizierenden Kinoseen und Phosphatasen bieten einen flexiblen zellulären Mechanismus zur Kontrolle der Proteinfunktion, der durch die Verfügbarkeit und Häufigkeit von Metaboliten, den Phosphorylierungszustand des Inositols und das Protein beeinflusst wird. Affinität der Interaktion1,3,13,38. Obwohl einige Proteindomänen gut charakterisiert sind39,40,41, z.B. Pleckstrin-Homologie-Domäne42 und SPX (SYG1/Pho81/XPR1) Domains43 ,44,45, einige Proteine interagieren mit IPs oder PIs durch Mechanismen, die unbekannt bleiben. Zum Beispiel fehlt dem Repressor-Aktivator-Protein 1 (RAP1) von T. brucei kanonische PI-bindende Domänen, sondern interagiert mit PI(3,4,5)P3 und kontrolliert die Transkription von Genen, die an antigener Variation beteiligt sind3. Affinitätschromatographie und Massenspektrometrieanalyse von IP- oder PI-interagierenden Proteinen aus Trypanosom-, Hefe- oder Säugetierzellen identifizierten mehrere Proteine ohne bekannte IP- oder PI-bindende Domänen8,46, 47. Die Daten deuten auf zusätzliche nicht charakterisierte Proteindomänen hin, die an diese Metaboliten binden. Daher kann die Identifizierung von Proteinen, die mit IPs oder PIs interagieren, neue Mechanismen der Protein-Metabolit-Interaktion und neue zelluläre Regulierungsfunktionen für diese kleinen Moleküle offenbaren.
Die hier beschriebene Methode verwendet Affinitätschromatographie gekoppelt mit western blotting oder Massenspektrometrie, um Proteine zu identifizieren, die an IPs oder PIs binden. Es verwendet biotinylierte IPs oder PIs, die entweder mit Streptavidin verbunden sind, konjugiert mit Agaroseperlen oder alternativ über streptavidin-konjugierte Magnetperlen gefangen werden (Abbildung 1). Die Methode bietet einen einfachen Workflow, der empfindlich, nicht radioaktiv, liposomenfrei ist und sich zum Nachweis der Bindung von Proteinen aus Zelllysaten oder gereinigten Proteinen eignet3 (Abbildung 2). Das Verfahren kann in etikettenfreien8,46 oder gekoppelt an Aminosäure-markierte quantitative Massenspektrometrie47 verwendet werden, um IP- oder PI-bindende Proteine aus komplexen biologischen Proben zu identifizieren. Daher ist diese Methode eine Alternative zu den wenigen verfügbaren Methoden, um die Wechselwirkung von IPs oder PIs mit zellulären Proteinen zu untersuchen und wird dazu beitragen, die regulatorische Funktion dieser Metaboliten bei Trypanosomen und vielleicht anderen Eukaryoten zu verstehen.
Die Identifizierung von Proteinen, die an IPs oder PIs binden, ist entscheidend, um die zelluläre Funktion dieser Metaboliten zu verstehen. Die Affinitätschromatographie, gekoppelt mit der Westlichen Fleck- oder Massenspektrometrie, bietet die Möglichkeit, IP- oder PI-interagierende Proteine zu identifizieren und so Einblicke in ihre regulatorische Funktion zu gewinnen. IPs oder PIs, die chemisch getaggt sind [z.B., Ins(1,4,5)P3, die chemisch mit Biotin verbunden sind] und über Streptavidin mit Agaroseperlen verbunde…
The authors have nothing to disclose.
Diese Arbeit wurde vom Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2019-04658) unterstützt. NSERC Discovery Launch Supplement for Early Career Researchers (DGECR-2019-00081) und von der McGill University.
Acetone | Sigma-Aldrich | 650501 | Ketone |
Acetonitrile | Sigma-Aldrich | 271004 | Solvent |
Ammonium bicarbonate | Sigma-Aldrich | A6141 | Inorganic salt |
Centrifuge Avanti J6-MI | Beckman Coulter | Avanti J6-MI | Centrifuge for large volumes (e.g., 1L) |
Centrifuge botles | Sigma-Aldrich | B1408 | Bottles for centrifugation of 1L of culture |
Control Beads | Echelon | P-B000-1ml | Affinity chromatography reagent – control |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Sugar, Added in PBS to keep cells viable |
Dithiothreitol (DTT) | Bio-Rad | 1610610 | Reducing agent |
Dynabeads M-270 Streptavidin | ThermoFisher Scientific | 65305 | Streptavidin beads for binding to biotin ligands |
EDTA-free Protease Inhibitor Cocktail | Roche | 11836170001 | Protease inhibitors |
Electrophoresis running buffer | Bio-Rad | 1610732 | 25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3 |
Falcon 15 mL Conical Centrifuge Tubes | Corning Life Sciences | 430052 | To centrifuge 10 mL cultures |
Formic acid | Sigma-Aldrich | 106526 | Acid |
Glycine | Sigma-Aldrich | G7126 | Amino acid |
HMI-9 cell culture medium | ThermoFisher Scientific | ME110145P1 | Cell culture medium for T. brucei bloodstream forms |
Imperial Protein Stain | ThermoFisher Scientific | 24615 | Coomassie staining for protein detection in SDS/PAGE |
Ins(1,4,5)P3 Beads | Echelon | Q-B0145-1ml | Affinity chromatography reagent |
Instant Nonfat Dry Milk | Thomas Scientific | C837M64 | Blocking reagent for Western blotting |
Iodoacetamide | Sigma-Aldrich | I6125 | Alkylating reagent for cysteine proteins or peptides |
Lab Rotator | Thomas Scientific | 1159Z92 | For binding assays |
LoBind Microcentrifuge Tubes | ThermoFisher Scientific | 13-698-793 | Low protein binding tubes for mass spectrometry |
Nonidet P-40 (Igepal CA-630) | Sigma-Aldrich | 21-3277 | Detergent |
PBS, pH 7.4 | ThermoFisher Scientific | 10010031 | Physiological buffer |
Peroxidase substrate for chemiluminescence | ThermoFisher Scientific | 32106 | Substrate for Western bloting detection of proteins |
PhosSTOP Phosphatase Inhibitor Cocktail Tablets | Roche | 4906845001 | Phosphatase inhibitors |
PI(3)P PIP Beads | Echelon | P-B003a-1ml | Affinity chromatography reagent |
PI(3,4)P2 PIP Beads | Echelon | P-B034a-1ml | Affinity chromatography reagent |
PI(3,4,5)P3 diC8 | Echelon | P-3908-1mg | Affinity chromatography reagent |
PI(3,4,5)P3 PIP Beads | Echelon | P-B345a-1ml | Affinity chromatography reagent |
PI(3,5)P2 PIP Beads | Echelon | P-B035a-1ml | Affinity chromatography reagent |
PI(4)P PIP Beads | Echelon | P-B004a-1ml | Affinity chromatography reagent |
PI(4,5)P2 diC8 | Echelon | P-4508-1mg | Affinity chromatography reagent |
PI(4,5)P2 PIP Beads | Echelon | P-B045a-1ml | Affinity chromatography reagent |
PI(5)P PIP Beads | Echelon | P-B005a-1ml | Affinity chromatography reagent |
Ponceau S solution | Sigma-Aldrich | P7170 | Protein staining (0.1% [w/v] in 5% acetic acid) |
Potassium hexacyanoferrate(III) | Sigma-Aldrich | 702587 | Potassium salt |
PtdIns PIP Beads | Echelon | P-B001-1ml | Affinity chromatography reagent |
PVDF Membrane | Bio-Rad | 1620177 | For Western blotting |
Refrigerated centrifuge | Eppendorf | 5910 R | Microcentrifuge for small volumes (e.g., 1.5 mL) |
Sodium dodecyl sulfate | Sigma-Aldrich | 862010 | Detergent |
Sodium thiosulfate | Sigma-Aldrich | 72049 | Chemical |
SpeedVac Vacuum Concentrators | ThermoFisher Scientific | SPD120-115 | Sample concentration (e.g., for mass spectrometry) |
T175 flasks for cell culture | ThermoFisher Scientific | 159910 | To grow 50 mL T. brucei culture |
Trypsin, Mass Spectrometry Grade | Promega | V5280 | Trypsin for protein digestion |
Urea | Sigma-Aldrich | U5128 | Denaturing reagent |
Vortex | Fisher Scientific | 02-215-418 | For mixing reactions |
Western blotting transfer buffer | Bio-Rad | 1610734 | 25 mM Tris, 192 mM glycine, pH 8.3 with 20% methanol |
Whatman 3 mm paper | Sigma-Aldrich | WHA3030861 | Paper for Wester transfer |
2-mercaptoethanol (14.2 M) | Bio-Rad | 1610710 | Reducing agent |
2x Laemmli Sample Buffer | Bio-Rad | 161-0737 | Protein loading buffer |
4–20% Mini-PROTEAN TGX Precast Protein Gels | Bio-Rad | 4561094 | Gel for protein electrophoresis |
4x Laemmli Sample Buffer | Bio-Rad | 161-0747 | Protein loading buffer |