Descriviamo un protocollo che utilizza la fluorescenza nell’ibridazione situ (FISH) per visualizzare più RNA herpesvirali all’interno di cellule umane lytically infette, sia in sospensione che aderenti. Questo protocollo include la quantificazione della fluorescenza producendo un rapporto nucleocitoplasmatica e può essere esteso per la visualizzazione simultanea di proteine ospite e virali con immunofluorescenza (IF).
Le informazioni meccanicistiche arrivano da un attento studio e quantificazione di RNA e proteine specifici. Le posizioni relative di queste biomolecole in tutta la cellula in momenti specifici possono essere catturate con la fluorescenza nell’ibridazione situ (FISH) e l’immunofluorescenza (IF). Durante l’infezione da herpesvirus littico, il virus dirotta la cellula ospite per esprimere preferibilmente geni virali, causando cambiamenti nella morfologia cellulare e nel comportamento delle biomolecole. Le attività littiche sono incentrate in fabbriche nucleari, definite compartimenti di replicazione virale, che sono distinguibili solo con FISH e IF. Qui descriviamo un protocollo adattabile delle tecniche RNA FISH e IF per le cellule infettate associate al sarcoma (KSHV) di Kaposi, sia aderenti che in sospensione. Il metodo include passaggi per lo sviluppo di specifici oligonucleotidi anti-senso, doppio RNA FISH, RNA FISH con IF, e calcoli quantitativi di intensità di fluorescenza. Questo protocollo è stato applicato con successo a più tipi di cellule, cellule non infette, cellule latenti, cellule littiche, corsi temporali e cellule trattate con inibitori per analizzare le attività spatiotemporali di RNA specifici e proteine sia dall’ospite umano che il kSHV.
Nella loro fase litetica (attiva), gli herpesvirus dirottano la cellula ospite, causando cambiamenti nella morfologia cellulare e nella localizzazione delle molecole biologiche, per produrre virioni. La base delle operazioni è il nucleo, dove il genoma virale del DNA a doppio filamento viene replicato e confezionato in un guscio proteico, chiamato capside1. Per cominciare, il virus esprime le proprie proteine, dirottando i macchinari ospiti e impedendo l’espressione di geni ospiti non essenziali, un processo chiamato effetto di chiusura dell’ospite. La maggior parte di questa attività è localizzata in specifiche regioni nucleari prive di 4,6-diamidino_2 -fenylindole (DAPI) chiamate compartimenti di replicazione virale, composti da proteine host e virali, RNA e DNA virale2. La cella viene revisionata per fornire spazio e risorse per i compartimenti di replicazione e quindi l’assemblaggio di capsidi virali. Una volta che il capside esce dal nucleo, non è chiaro come il capside sia avvolto nel citoplasma per produrre una particella virale legata alla membrana, nota anche come virione. La comprensione della localizzazione e degli spostamenti spaziali delle biomolecole sia dell’ospite che di quella virale durante la fase littica fornisce una visione più profonda meccanistica della disposizione del compartimento di replicazione, dell’effetto di spegnimento dell’ospite, della via virione-uscita e di altri processi correlati all’infezione da herpesviral e alla replicazione.
Attualmente il metodo migliore per rilevare e studiare questi cambiamenti è la visualizzazione di proteine e RNA nelle cellule infette con immunofluorescenza (IF) e l’ibridazione fluorescente in situ (FISH), rispettivamente. L’uso di un corso temporale con queste tecniche rivela la localizzazione delle biomolecole nei punti chiave della fase littica o semplicemente, dati spatiotemporali. FISH e IF completano altre tecniche biochimiche, come l’inibizione di un processo cellulare (ad esempio, l’inibizione della replicazione del DNA virale), RT-qPCR (reazione a catena polimerasi in tempo reale), il sequenziamento dell’RNA, le macchie settentrionali, la spettrometria di massa, l’oscillazione occidentale e l’analisi della produzione di DNA virale, che può fornire un quadro più globale delle attività cellulari.
Abbiamo sviluppato strategie di RNA FISH per esaminare i prodotti dell’RNA da geni specifici e un’analisi computazionale che calcola quantitativamente il rapporto nucleocitoplasmatico di un prodotto genetico specifico. La preparazione di esempio, modificata da pubblicazioni precedenti da Steitz e colleghi3,4, è relativamente semplice e può essere utilizzata sia per le cellule aderenti che per le cellule sospese. Il protocollo è anche adattabile per l’uso simultaneo di più strategie DI RNA FISH (double RNA FISH) o RNA FISH con strategie IF. Lo sviluppo di una strategia FISH specifica è impegnativo, ma vengono delineati suggerimenti per migliorare il successo. L’analisi dei dati qui descritta è quantitativa se vengono utilizzate perline fluorescenti e forti indicatori di confini di compartimenti e offre ulteriori informazioni sulle micrografie, informazioni che eliminano la distorsione di osservazione. Il protocollo dettagliato è progettato per cellule latenti e litine infettate dall’herpesvirus associato al sarcoma di Kaposi (KSHV) e può essere utilizzato con cellule non infette o cellule infettate da altri herpesvirus5. I metodi di quantitazione sono applicabili agli studi sui spostamenti nucleocitoplasmatici o sulla rilocalizzazione tra compartimenti subcellulari nella maggior parte delle cellule.
Il protocollo descritto in questo rapporto può essere adattato a diversi tipi di cellule e include passi per raddoppiaRE RNA FISH e RNA FISH con IF utilizzando anticorpi primari monoclonali e policlonali. Anche se i vetrini preparati sono tipicamente immagini con un microscopio confocale, l’imaging può essere eseguito con un microscopio STED (esaurimento delle emissioni stimolato) dopo le modifiche di una maggiore concentrazione di anticorpi e di un diverso mezzo di montaggio. Per un’analisi avanzata delle singole cell…
The authors have nothing to disclose.
Ringraziamo Jonathan Rodenfels, Kazimierz Tycowski e Johanna B. Withers per consigli sull’analisi dei dati. Ringraziamo anche G. Hayward per l’anticorpo anti-SSB. Questo lavoro è stato sostenuto da sovvenzioni T32GM007223 e T32AI055403 dai National Institutes of Health (a TKV) e niH grant (CA16038) (a JAS). JAS è un investigatore dell’Howard Hughes Medical Institute. Le figure 1-3 e 1 tabella sono state riprodotte con il permesso dell’American Society for Microbiology sotto una licenza di attribuzione Creative Commons della seguente pubblicazione: Vallery, T. K., Withers, J. B., Andoh, J. A., Steitz, Sarcoma-Associated di J. A. Kaposi L’accumulo di mRNA da herpesvirus nei foci nucleari è influenzato dalla replicazione del DNA virale e dall’RNA nucleare policodificato virale non codificante. Giornale di Virologia. 92 (13), doi:10.1128/JVI.00220-18, (2018).
AlexaFluor594-5-dUTP | Life Technologies | C1100 | |
anti-DIG FITC | Jackson Lab Immunologicals | 200-092-156 | |
Anti-Rabbit Secondary AlexaFluor594 Monoclonal Antibody | Invitrogen | A-11037 | Goat |
Anti-SSB Antibody | N/A | N/A | Ref. Chiou et al. 2002 |
BLASTn | NIH NCBI | N/A | Free Sequence Alignment Software |
Dextran Sulfate | Sigma Aldrich | D8906 | Molecular Biology Grade |
DIG-Oligonucleotide Tailing Kit | Sigma Roche | #03353583910 | 2nd Gen |
Eight-Chamber Slides | Nunc Lab Tek II | #154453 | Blue seal promotes surface tension but separation by clear gel is also available. |
Formamide | Sigma Aldrich | F9037 | Molecular Biology Grade |
GAPDH Probes | Stellaris | SMF-2019-1 | Compatible with protocol, Quasar 670 |
ImageJ | NIH, Bethesda, MD | N/A | Free Image Analysis Software, [http:rsb.info.nih.gov/ij/] |
OligoAnalyzer | IDT | N/A | Free Oligonucleotide Analyzer |
pcDNA3 | Invitrogen | A-150228 | |
pmaxGFP | Amaxa | VDF-1012 | |
Poly L-Lysine | Sigma Aldrich | P8920 | |
Terminal Transferase | Sigma Roche | #003333574001 | |
Vanadyl Ribonucleoside Complexes | NEB | S1402S | |
Vectashield | Vector Laboratories, Inc. | H-1000 | DAPI within the mounting media scatters the light and reduces contrast. |