Summary

使用氧化二氮作为评估哺乳动物体内成分和耗水量的非侵入性、非致命性工具

Published: February 20, 2020
doi:

Summary

本文介绍了两种哺乳动物(昆虫和食肉)的氧化稀释技术,以确定全身水分、瘦体质量、身体脂肪量和耗水量。

Abstract

身体状况评分系统和身体状况指数是评估一个物种的健康状况或健康状况的常见技术。身体状况评分系统是评估者依赖的,具有高度主观性的潜力。身体状况指数可以通过觅食、体重的影响以及统计和推断问题来混淆。身体状况评分系统和身体状况指数的替代是使用稳定的同位素,如氧化铀来确定身体成分。氧化氧化剂稀释法是一种可重复的定量技术,用于估计人类、野生动物和国内物种的身体组成。此外,氧化铀稀释技术可用于确定单个动物的耗水量。在这里,我们描述了氧化氧化稀释技术对评估大棕色蝙蝠(Eptesus fuscus)的身体成分以及评估猫(Felis catis)的耗水量的适应。

Introduction

身体状况评分系统和身体状况指数是评估1、2类健康状况或健康状况的常见技术。许多家养动物和动物物种都有独特的身体状况评分(BCS)系统,用于评估动物的肌肉和表面脂肪组织3。但是,BCS 评估依赖于评估者,这意味着当经过培训的评估者评估 BCS 是一个目标或半定量的测量时。在野生动物物种中,身体状况指数是常用的,而不是BCS,并且基于身体质量与体型或身体质量与前臂2的比率。身体状况的病症往往被觅食的影响混淆,可以混淆的体型,以及统计和推断问题4。

身体状况评分系统和身体状况指数的替代是使用稳定的同位素来确定身体成分。一种常用的稳定同位素是氧化铀(D2O),这是一种非放射性水,其中氢原子是铀同位素。本研究中描述的氧化氧化稀释方法可以是一种非主观、定量和可重复的技术,用于估计人类5和多种物种4、6、7的人体组成。这种技术对研究野生动物的身体组成是有利的。例如,它可用于评估身体成分的纵向变化,例如管理行动之前和之后。然而,在一些野生动物物种中,氧化氮可以高估实际含水量8。因此,在适应某一物种的技术时,通过比较氧化氧化法和非濒危物种的骨层分析来验证该方法非常重要。对于受威胁和濒危物种,应将双X射线吸收测量(DXA)等非破坏性方法视为与完全尸体分析的黄金标准破坏性方法的替代比较方法。

除了身体成分,D2O稀释技术还可用于确定单个动物的耗水量9。D2 O的这种独特应用不仅可用于回答研究问题,还可用于评估大型社会环境中个体动物的耗水量。

在这里,我们描述了D2O稀释技术的适应,用于评估昆虫、大棕色蝙蝠(Eptesus fuscus)中的身体成分,以及评估食肉动物、猫(费利斯猫)的耗水量。

Protocol

这里描述的所有实验都得到密苏里大学动物护理和使用委员会的批准,并在密苏里保护部(MDC)野生动物科学采集许可证(许可证#16409和#17649)下进行。 1. 制备无菌、等位、盐渍D2O库存溶液 制作 9.0 g/L 盐渍 D2O 的 50 mL 库存溶液。 重量为 450 mg 的制药级 NaCl,并将所有 NaCl 转移到 100 mL 的消毒烧杯中。在实验室笔记本中记录 NaCl 的确切数量到小数?…

Representative Results

氧化氧化稀释技术可用于评估各种物种的身体组成。为了证明适应性,我们报道了在北美昆虫蝙蝠物种Eptesicus fuscus(大棕色蝙蝠)中首次使用氧化氮稀释技术,以取得代表性的结果。通过采集D2 O注射前和后注血样本,完成定时高原,如对任何不为平衡期未知的物种进行。经测定,在非蝙蝠注射后两小时,足以进行平衡。随着平衡时间的已知,确定了13只野?…

Discussion

自20世纪40年代以来,利用氧化氮测定TBW,并用于人类和各种家养和野生动物物种4、6、7。其他非破坏性技术已经开发,包括生物电阻抗分析 (BIA)、DXA 和定量磁共振 (QMR)。每种方法都有优点和缺点,在选择评估身体成分的特定方法之前应考虑。该协议选择使用DXA作为氧化氮的比较方法,以评估身体成分?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究得到了MDC合作协议(#416)、美国森林服务合作协议(16-JV-1124231-118)、美国兽医营养学院和沃尔瑟姆/皇家坎宁大学、美国赠款(赠款号:00049049)、NIH培训补助金(赠款号:T32OS011126)和密苏里大学兽医研究学者计划的支持。作者感谢香农·埃勒斯对这份手稿进行了预先审查。我们感谢罗伯特·沃库斯博士提供D2O标准并允许使用他的实验室。

Materials

0.2 micron non-pyrogenic disk filter Argos Technologies FN32S nylon, 30mm diameter, 0.22um, sterile
1.5 mL conical microcentrifuge tubes USA Scientific 1415-9701 1.5 ml self-standing microcentrifuge tube, natural with blue cap
10 mL sterile glass vial for injection Mountainside Medical Equipment MS-SEV10 clear, sterile glass injection unit
10 mL syringe Becton Dickinson 305219 sterile 10 mL syringe individually wrapped
100 mL sterile glass vial for injection Mountainside Medical Equipment AL-SV10020 clear, sterile glass injection unit
20 gauge needle Exel 26417 needles hypodermic 20g x 1" plastic hub (yellow) / regular bevel
22 gauge needle Exel 26411 needles hypodermic 22g x 1" plastic hub (black) / regular bevel
deuterium oxide Sigma-Aldrich 151882-25G 99.9 atom % D
isofluorane Vetone 3060 fluriso isoflurane, USP
OMNIC Spectra Software ThermoFisher Scientific 833-036200 FT-IR standard software
petroleum jelly Vaseline 305212311006 Vaseline, 100% pure petroleum jelly, original, skin protectant
plastic capillary tubes Innovative Med Tech 100050 sodium heparin anticoagulant, 50 μL capacity, 30 mm length
Sealed liquid spectrophotometer SL-3 FTIR CAF2 Cell International Crystal Laboratory 0005D-875 0.05 mm Pathlength
sodium chloride EMD Millipore 1.37017 suitable for biopharmaceutical production
Thermo Electron Nicolet 380 FT-IR Spectrometer ThermoFisher Scientific 269-169400 discontinued model, newer models available

Referências

  1. Schiffmann, C., Clauss, M., Hoby, S., Hatt, J. M. Visual body condition scoring in zoo animals – composite, algorithm and overview approaches. Journal of Zoo Aquarium Research. 5 (1), (2017).
  2. Peig, J., Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 118 (12), 1883-1891 (2009).
  3. Bissell, H. . Body Condition Scoring Resource Center. , (2017).
  4. McWilliams, S. R., Whitman, M. Non-destructive techniques to assess body composition of birds: a review and validation study. Journal of Ornithology. 154 (3), 597-618 (2013).
  5. Lukaski, H. C., Johnson, P. E. A simple, inexpensive method of determining total body water using a tracer dose of D2O and infrared absorption of biological fluids. American Journal of Clinical Nutrition. 41 (2), 363-370 (1985).
  6. Chusyd, D. E., et al. Adiposity and Reproductive Cycling Status in Zoo African Elephants. Obesity (Silver Spring). 26 (1), 103-110 (2018).
  7. Kanchuk, M. L., Backus, R. C., Calvert, C. C., Morris, J. G., Rogers, Q. R. Neutering Induces Changes in Food Intake Body Weight, Plasma Insulin and Leptin Concentrations in Normal and Lipoprotein Lipase–Deficient Male Cats. The Journal of Nutrition. 132 (6), 1730S-1732S (2002).
  8. Eichhorn, G., Visser, G. H. Technical Comment: Evaluation of the Deuterium Dilution Method to Estimate Body Composition in the Barnacle Goose: Accuracy and Minimum Equilibration Time. Physiological and Biochemical Zoology. 81 (4), 508-518 (2008).
  9. Hooper, S. E., Backus, R., Amelon, S. Effects of dietary selenium and moisture on the physical activity and thyroid axis of cats. Journal of Animal Physiolgy and Animal Nutrition (Berl). 102 (2), 495-504 (2018).
  10. Stevenson, K. T., van Tets, I. G. Dual-Energy X-Ray Absorptiometry (DXA) Can Accurately and Nondestructively Measure the Body Composition of Small, Free-Living Rodents. Physiological and Biochemical Zoology. 81 (3), 373-382 (2008).
  11. Jennings, G., Bluck, L., Wright, A., Elia, M. The use of infrared spectrophotometry for measuring body water spaces. Clinical Chemistry. 45 (7), 1077-1081 (1999).
  12. Beuth, J. M. . Body Composition, movemement phenology and habitat use of common eider along the southern new england coast. Master of Science in Biological and Environmental Sciences (MSBES) thesis. , (2013).
  13. Coplen, T. B., Hopple, J., Peiser, H., Rieder, S. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey Water-Resources Investigations Report 01-4222. , (2002).
  14. Karasov, W. H., Pinshow, B. Changes in lean mass and in organs of nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiological Zoology. 71 (4), 435-448 (1998).
  15. Hood, W. R., Oftedal, O. T., Kunz, T. H. Variation in body composition of female big brown bats (Eptesicus fuscus.) during lactation. Journal of Comparative Physiology B. 176 (8), 807-819 (2006).
  16. Backus, R. C., Havel, P. J., Gingerich, R. L., Rogers, Q. R. Relationship between serum leptin immunoreactivity and body fat mass as estimated by use of a novel gas-phase Fourier transform infrared spectroscopy deuterium dilution method in cats. American Journal of Veterinary Research. 61 (7), 796-801 (2000).
  17. Moore, F. D. Determination of Total Body Water and Solids with Isotopes. Science. 104 (2694), 157-160 (1946).
  18. Voigt, C., Cruz-Neto, A., Parsons, S., Kunz, T. H. . Ecological and Behavioral Methods in the Study of Bats. , 621-645 (2009).
  19. International Atomic Energy Agency. . Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques. , (2009).
  20. International Atomic Energy Agency. . Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry. , (2011).
  21. Shimamoto, H., Komiya, S. The Turnover of Body Water as an Indicator of Health. Journal of Physiological Anthropology and Applied Human Science. 19 (5), 207-212 (2000).

Play Video

Citar este artigo
Hooper, S. E., Eshelman, A. N., Cowan, A. N., Roistacher, A., Paneitz, T. S., Amelon, S. K. Using Deuterium Oxide as a Non-Invasive, Non-Lethal Tool for Assessing Body Composition and Water Consumption in Mammals. J. Vis. Exp. (156), e59442, doi:10.3791/59442 (2020).

View Video