تقدم هذه المقالة بروتوكولا معياريا لعلم الدهون في الأنسجة وعلم النسخ ، والدهون في البلازما في نماذج فئران الأمراض العصبية التي تستهدف الدهون الكامنة وراء الالتهاب والنشاط العصبي ، والدهون الغشائية ، والرسل في اتجاه المصب ، والإنزيمات / المستقبلات المشفرة للحمض النووي الريبوزي المرسال الكامنة وراء وظيفة الدهون. يتم تحديد إجراءات أخذ العينات ومعالجة العينات واستخراجها وقياسها كميا.
تعمل الدهون كواجهة أساسية لإهانات الدماغ أو المحفزات المفضية إلى الأمراض العصبية وهي خزان لتخليق الدهون مع مختلف الإشارات أو وظيفة الرباط التي يمكن أن تؤكد على ظهور الأمراض وتطورها. غالبا ما تتغير الدهون على مستوى الأعراض السابقة ، وهي مصدر ناشئ لأهداف الأدوية والمؤشرات الحيوية. تظهر العديد من الأمراض العصبية التهابا عصبيا وتنكسا عصبيا واستثارة عصبية كسمات مميزة مشتركة ، يتم تعديلها جزئيا بواسطة أنظمة إشارات دهون محددة. إن الاعتماد المتبادل والترابط بين توليف الدهون المختلفة يدفع إلى تحليل متعدد الدهون ومتعدد الإنزيمات والمستقبلات المتعددة من أجل اشتقاق القواسم المشتركة والخصائص للسياقات العصبية والإسراع في كشف الجوانب الميكانيكية لظهور المرض وتطوره. إن إسناد أدوار الدهون إلى مناطق الدماغ المتميزة يعزز تحديد النمط الظاهري الجزيئي الدهني والمورفولوجيا المرتبطة بمرض عصبي.
يظهر هنا بروتوكول معياري مناسب لتحليل الدهون الغشائية وإشارات الدهون في اتجاه المصب جنبا إلى جنب مع mRNA للإنزيمات والوسطاء الكامنة وراء وظائفها ، المستخرجة من مناطق الدماغ المنفصلة ذات الصلة بمرض عصبي معين و / أو حالة عصبية. لضمان التنميط الدهني المقارن الدقيق ، تم تحسين سير العمل ومعايير التشغيل وتوحيدها من أجل: i) أخذ عينات الدماغ وتشريح المناطق ذات الاهتمام ، ii) الاستخراج المشترك لإشارات الدهون المتعددة والدهون الغشائية ، iii) استخراج الدهون المزدوجة / mRNA ، iv) القياس الكمي عن طريق مراقبة التفاعلات المتعددة للكروماتوغرافيا السائلة (LC / MRM) ، و v) التنميط القياسي mRNA. سير العمل هذا قابل للتعاريف لكميات الأنسجة المنخفضة التي يتم الحصول عليها عن طريق أخذ عينات من المناطق الفرعية المنفصلة وظيفيا في الدماغ (أي عن طريق لكم الدماغ) ، وبالتالي منع التحيز في التحليل متعدد الجزيئات بسبب عدم تجانس الأنسجة و / أو التباين الحيواني. للكشف عن العواقب الطرفية للأمراض العصبية وإنشاء قراءات جزيئية انتقالية لحالات الأمراض العصبية ، يتم أيضا متابعة ووصف عينات الأعضاء الطرفية ومعالجتها وتحليلها الدهني اللاحق ، وكذلك الدهون في البلازما. يتم عرض البروتوكول على نموذج فأر الصرع الحاد.
التطورات الحديثة في وظيفة الدهون ودورها في ظهور الأمراض العصبية وتطورها تفتح أماكن جديدة للبحث والتطوير لأهداف علاجية جديدة وتوضيح آلية المرض1. الاختلافات الموثقة في تكوين الدهون في مناطق الدماغ المختلفة ، والتي تؤكدها تقنيات التصوير الجزيئي الحديثة مثل التصوير الطيفي الكتلي والتنميط المتقدم لقياس الطيف الكتلي ، تحول نموذج التحقيق في الدهون من الدماغ كله إلى مناطق الدماغ المتميزة وظيفيا والمنفصلة. حقيقة أن تكوين الدهون يختلف في مناطق الدماغ المختلفة يدفع إلى تصور جديد لكل من حساسية الدهون الغشائية وإشارات الدهون في اتجاه المصب استجابة لإهانة الدماغ أو المحفزات عبر مناطق الدماغ المتميزة وظيفيا. وبالتالي ، تتطلب بروتوكولات الدهون تطورات جديدة لمواجهة التحدي المتمثل في انخفاض كميات الأنسجة للكشف عن الدقة المكانية الأعلى وتحديدها كميا ، وفي الوقت نفسه ، تحليل المكونات الدهنية المتعددة لأغشية الخلايا ومسارات الإشارات. أيضا ، يعد تحديد الإنزيمات وروابط الدهون والمستقبلات المشاركة في تنظيم مستوياتها ووظيفتها أمرا بالغ الأهمية لتوضيح مسارات الإشارات المتأثرة بمرض عصبي وتوجيه التحقيقات الميكانيكية الجديدة في سياق فسيولوجي مرضي.
بالإضافة إلى زيادة الدقة المكانية للدماغ ، هناك صعوبتان رئيسيتان تتحديان تطوير مناهج جديدة للدهون العصبية. أولا ، عادة ما تكون جزيئات إشارات الدهون ذات وفرة منخفضة للغاية مقارنة بالدهون المكونة للغشاء. ثانيا ، تظهر القبة الشحمية عدم تجانس هيكلي عال ، يصعب تشريحها باستخدام نهج تحليلي واحد. وبالتالي ، يتم تصميم طرق الاستخراج والتحليل لفئات الدهون المختلفة ويتم إجراؤها عادة في عينات الأنسجة المتميزة.2. طرق البندقية الدهنية3 هي أدوات ممتازة للكشف بسرعة عن ملف تعريف واسع من الدهون الغشائية ، في حين يتم الاستفادة من زيادة الحساسية والانتقائية التي توفرها طرق الاكتشاف المستهدفة والقياس الكمي للطيف الكتلي للتحقيق في الدهون ذات الإشارات المنخفضة بما في ذلك: i) الدهون الالتهابية و ii) الدهون المشاركة في تعديل النشاط العصبي ، مثل endocannabinoids (eCBs) ، والدهون المرتبطة بالأحماض الأمينية ، الخ.4,5. لتشمل تغيرات الدهون على كل من غشاء الخلية ومستوى الإشارات التي تحدث في مناطق الدماغ من نماذج الأمراض العصبية ، عادة ما يتم استخراج الدهون وتحليلها في عينات أنسجة متميزة ، يتم الحصول عليها من دفعات حيوانية متميزة أو من نصفي الكرة الأرضية مختلفين ، أو عن طريق تشريح منطقة نسيج أكبر إلى قطع متعددة. عندما تكون مستويات الحمض النووي الريبوزي المرسال من مستقبلات الإنزيم ذات أهمية أيضا ، فإن تحقيقها يتطلب عادة شراء عينة أنسجة متميزة. على سبيل المثال ، سيتطلب التحقيق في الدهون الغشائية ، والقنب الداخلي ، والحمض النووي الريبي المرسال ثلاث عينات مختلفة من الأنسجة ، (على سبيل المثال ، عينتان لطريقتي استخراج الدهون – دهون الغشاء والدهون المشيرة – وطريقتان لاحقتان لتحليل الدهون – وعينة واحدة لتحليل الحمض النووي الريبي المرسال). يتطلب التحقيق في الدهون الالتهابية والقنب الداخلي عينتين متميزتين من الأنسجة ، طرق الاستخراج ، وطرق التحليل ، على التوالي. مثال آخر هو التحقيق في الحمض النووي الريبوزي المرسال وأي فئة من الدهون في عينة التشريح المجهري للدماغ أو الليزر والتي تتطلب بالتالي حيوانين متميزين لشراء عينتين لكل منطقة دماغية (فرعية). وكثيرا ما يحدث في مثل هذه الحالات قدر كبير من التباين و/أو ضعف تكرار النتائج، وينشأ عن التباين البيولوجي و/أو عدم تجانس الأنسجة. واسترشادا بهذه القيود العملية للتحليل متعدد الجزيئات، الذي يحدث بشكل خاص عند الدقة المكانية العالية في الدماغ، تم تصميم بروتوكول للدهون العصبية المكون من ثلاث وحدات يشمل: 1) الاستخراج المشترك والتحليل المشترك بواسطة LC/MRM للدهون الالتهابية (على سبيل المثال، eicosanoids (eiCs)) والدهون المشاركة في تعديل النشاط العصبي، مثل eCBs2; 2) الاستخراج المشترك للدهون الفوسفاتية (PLs) و eCBs مع LC / MRM متعدد المسح اللاحق وتحليل مسح فقدان السلائف / محايدة2; و 3) الاستخراج المزدوج للدهون الغشائية (الفوسفو) و eCBs وكذلك mRNA ، مع تحليل تسلسل LC / MRM و qPCR أو RNA اللاحق6. اعتمادا على السؤال البيولوجي الذي يجب معالجته في مرض عصبي ومنطقة الدماغ ذات الأهمية ، يمكن تطبيق مزيج من البروتوكول الأول والثاني ، أو البروتوكول الأول والثالث ، على نفس عينة الأنسجة للأنسجة التي تزن حوالي 4 ملغ. يمكن تطبيق البروتوكولين الأول والثالث بشكل مستقل على الأنسجة حوالي 2 ملغ. يمكن تطبيق البروتوكول الثاني على الأنسجة التي تزن أقل من 0.5 ملغ. بغض النظر عن وحدة البروتوكول العصبي الدهني المختارة ، فإن أخذ عينات الأنسجة والمعالجة قبل التحليلية ، وعزل الدماغ وتشريح المنطقة ، بالإضافة إلى إجراء التضحية بالنموذج الحيواني موحدة ومتطابقة لجميع الوحدات الثلاث للبروتوكول. في تحقيقنا في الأمراض العصبية ، يتم دائما جمع وتحليل الأعضاء الطرفية ذات الصلة بالعواقب المرضية للمرض باستخدام هذه البروتوكولات المعيارية. بالإضافة إلى ذلك ، يتم أخذ عينات من الدم بانتظام لدهون البلازما لتكون بمثابة أداة قراءة للأمراض العصبية مع عرض التطبيقات الانتقالية المحتملة. بروتوكول الدهون المعياري المعروض هنا متعدد الاستخدامات للغاية: قابل للقياس إلى كميات أكبر من الأنسجة وقابل للتطبيق بسهولة على أي نوع من الأنسجة والأمراض تقريبا. لتطبيق البروتوكول المعياري (الشكل 1) في الأمراض العصبية ، فإن أي نموذج قياسي للقوارض لظهور وتطور الاضطرابات العصبية ، مثل إصابات الدماغ الرضحية أو مرض باركنسون أو مرض الزهايمر أو الصرع يمكن علاجه.
تم تطبيق هذه البروتوكولات على نطاق واسع لدراسة التغيرات في الأنسجة الدهنية و / أو النسخ في المرحلة الحادة من الصرع في نموذج الفأر الناجم عن حمض الكانيك (KA) من الصرع 2,7 ، وهو نموذج يستخدم على نطاق واسع في الدراسات قبل السريرية بسبب التشابه مع صرع الفص الصدغي البشري (TLE) 8,9,10,11. باستخدام هذه البروتوكولات ، تم تقييم الإمكانات العلاجية للعقاقير مثل Palmitoylethanolamide (PEA) 12,13 في نفس نموذج الفأر من الصرع. حددت الدراسة تغيرات الدهون والحمض النووي الريبوزي المرسال بدقة مكانية عالية ومنخفضة في الدماغ والمحيط، في نقطة زمنية من أقصى شدة النوبات الحادة (في 60 دقيقة بعد تحريض النوبة)، وعند العلاج شبه المزمن والحاد مع PEA في أربع نقاط زمنية مختلفة (20 و 60 و 120 و 180 دقيقة) بعد تحريض نوبة KA، وهي نافذة زمنية تغطي المرحلة الحادة من الصرع. تم جمع البلازما والأدمغة والأعضاء الطرفية للفئران غير المعالجة بحقن KA ، والفئران الحادة والمعالجة بشكل مزمن ب PEA ، وكذلك فئران التحكم في المركبات ومركبات PEA ، في كل نقطة زمنية 12,13 ، وتم التحقيق فيها باستخدام هذا التحليل الجزيئي. ارتبطت البيانات الجزيئية بالأنماط الظاهرية السلوكية التي تم الحصول عليها عن طريق تسجيل النوبات ، وكذلك مع البيانات المشتقة من الكيمياء النسيجية المناعية حول العمليات التنكسية العصبية ، من أجل كشف تطور مرحلة الصرع الحاد وإمكانات PEA للتخفيف من حدتها.
تعد منهجية الخلايا العصبية الشحمية والنسخ الموصوفة هنا وسيلة قابلة للتطبيق للتحقيق في أي مرض أو تطور صحي بدقة مكانية عالية ومنخفضة في الدماغ والأعضاء الطرفية. نظرا لإجراءات أخذ عينات البلازما ومعالجتها المحسنة ، يمكن أيضا إجراء تحليل الدهون في البلازما من نفس الحيوانات التي تم التضحية ب…
The authors have nothing to disclose.
نهدي هذه المقالة إلى الدكتورة إرميليندا لومازو. أثناء الانتهاء من هذه المخطوطة، توفيت الدكتورة إرميليندا لومازو. إنها تجسيد للشغف بالعلوم والمشاركة غير الأنانية في العمل الجماعي لتحقيق غرض بحثي ذي مغزى. كانت تحلم دائما بالمساهمة بشكل هادف في تحقيق رفاهية أكبر للبشر. لم تتعرض طبيعتها الطيبة للخطر أبدا بسبب الطرق الشاقة للعلم والحياة. ستبقى لا تقدر بثمن ، وإلى الأبد ، في قلوبنا.
تم تمويل جوليا م. بوست من قبل برنامج التركيز لعلم الأعصاب الانتقالي (FTN) في المركز الطبي الجامعي التابع لجامعة يوهانس غوتنبرغ ماينز ويتم تمويله حاليا من قبل مشروع SPP-2225 EXIT إلى LB. تم تمويل ريسا ليرنر جزئيا من قبل مشروع DZHK 81X2600250 إلى LB و Lipidomics Core Facility. تم توفير تمويل جزئي لهذه الدراسات من قبل المرفق الأساسي Lipidomics ، ومعهد الكيمياء الفسيولوجية ، والأموال الداخلية (إلى LB) من المركز الطبي الجامعي بجامعة يوهانس غوتنبرغ ماينز.
12(S)-HETE | Biomol | Cay10007248-25 | Lipid Std |
12(S)-HETE-d8 | Biomol | Cay334570-25 | Lipid Std |
1200 series LC System | Agilent | Instrumentation/LCMS | |
2100 Bioanalyzer | Agilent | Instrumentation/qPCR | |
5(S)-HETE-d8 | Biomol | Cay 334230 | Lipid Std |
ABI 7300 Real-Time PCR cycler | Applied Biosystems | Instrumentation/qPCR | |
Acetonitrile LC-MS Chroma Solv | Honeywell | 9814920 | Solvent/LCMS |
amber eppendorf tubes | Eppendorf | Sample Prep. | |
Analyst 1.6.2 Software | AB SCIEX, Darmstadt | Software | |
Analytical balance | Mettler Toledo | Instrumentation/Sample prep. | |
Arachidonic Acid-d8 MS Standard | Biomol | Cay-10007277 | Lipid Std |
Bessmann Tissue Pulverizer | Spectrum Laboratories, Inc. (Breda, Netherlands) | Instrumentation/Sample prep. | |
Bino | Zeiss | Microscopy | |
cleaved Caspase 3 antibody | Cellsignaling | 9661S | Microscopy |
Cryostat, Leica CM3050 S | Leica Biosystems | Instrumentation/Sample prep. | |
CTC HTC PAL autosampler | CTC Analytics AG | Instrumentation/LCMS | |
Dumont Curved Forceps Dumoxel #7 | FST | 11271-30 | Surgical Tools |
Dumont Forceps Super fine tip #5SF (x2) | FST | 11252-00 | Surgical Tools |
EDTA 1000 A Röhrchen | Kabe Labortechnik | 078001 | Sample Prep. |
EP-1 EconoPump | BioRAD | 700BR07757 | Instrumentation/Sample prep. |
Fine Forceps Mirror Finish | FST | 11412-11 | Surgical Tools |
Fine Iris Scissors straight sharp | FST | 14094-11 | Surgical Tools |
Fine Scissor Tungsten Carbide straight | FST | 14568-09 | Surgical Tools |
Iris Spatulae | FST | 10094-13 | Surgical Tools |
Kainic acid | Abcam | ab120100 | Epileptic drug |
Lipid View software | AB SCIEX, Darmstadt | Software | |
LPC 17:0 | Avanis Polaris | 855676P | Lipid Std |
LPC 18:0 | Avanis Polaris | 855775P | Lipid Std |
Luna 2,5µm C18(2)- HAST 100A LC column | Phenomenex | 00D-4446-B0 | Instrumentation/LCMS |
Magnifying lamp | Maul GmbH | Instrumentation/Sample prep. | |
Methanol LC-MS Chroma Solv 99.9% | Honeywell | 9814920 | Solvent/LCMS |
Motic Camara | Motic | Microscopy | |
MTBE | Honeywell | 34875-1L | Solvent/LCMS |
MultiQuant 3.0 quantitation software package | AB SCIEX, Darmstadt | Software | |
NanoDrop 2000c Spectrophotometer | Thermo Scientific | Instrumentation/qPCR | |
PA 16:0-18:1 | Avanis Polaris | 840857P | Lipid Std |
PA 17:0-14:1 | Avanis Polaris | LM-1404 | Lipid Std |
Palmitoyl Ethanolamide | Biomol | Cay90350-100 | Lipid Std |
Palmitoyl Ethanolamide-d5 | Biomol | Cay9000573-5 | Lipid Std |
PC 16:0-18:1 | Avanis Polaris | 850457P | Lipid Std |
PC 16:0-18:1 | Avanis Polaris | 850457P | Lipid Std |
PC 17:0-14:1 | Avanis Polaris | LM-1004 | Lipid Std |
PE 16:0-18:1 | Avanis Polaris | 850757P | Lipid Std |
PE 17:0-14:1 | Avanis Polaris | LM-1104 | Lipid Std |
PG 16:0-18:1 | Avanis Polaris | 840457P | Lipid Std |
PG 17:0-14:1 | Avanis Polaris | LM-1204 | Lipid Std |
PI 17:0-14:1 | Avanis Polaris | LM-1504 | Lipid Std |
Precelleys 24 | Peqlab | Instrumentation/Sample prep. | |
Precellys Keramik-Kügelchen | Peqlab | 91-pcs-ck14p | Sample Prep. |
Precellys Stahlkugeln 2,8mm | Peqlab | 91-PCS-MK28P | Sample Prep. |
Precellys-keramik-kit 1,4 mm | VWR | 91-PCS-CK14 | Sample Prep. |
Prostaglandin D2 | Biomol | Cay 12010 | Lipid Std |
Prostaglandin D2-d4 | Biomol | Cay 312010 | Lipid Std |
Prostaglandin E2 | Biomol | Cay10007211-1 | Lipid Std |
Prostaglandin E2-d9 | Biomol | Cay10581-50 | Lipid Std |
PS 17:0-14:1 | Avanis Polaris | LM-1304 | Lipid Std |
Q Trap 5500 triple-quadrupole linear ion trap MS | AB SCIEX | AU111609004 | Instrumentation/LCMS |
Real Time PCR System | Appliert Biosystem | Instrumentation/qPCR | |
Resolvin D1 | Biomol | Cay10012554-11 | Lipid Std |
Rneasy Mini Kit – RNAase-Free DNase Set (50) | Qiagen | 79254 | Sample Prep. |
Security Guard precolumn | Phenomenex | Instrumentation/LCMS | |
Shandon coverplates | Thermo Fisher | 72110017 | Microscopy |
Shandon slide rack and lid | Thermo Fisher | 73310017 | Microscopy |
SM 18:0 | Avanis Polaris | 860586P | Lipid Std |
SM d18:1/12:0 | Avanis Polaris | LM-2312 | Lipid Std |
Standard Forceps straight Smooth | FST | 11016-17 | Surgical Tools |
Surgical Scissor ToughCut Standard Pattern | FST | 14130-17 | Surgical Tools |
T3000 Thermocycler | Biometra | Instrumentation/qPCR | |
Thromboxane B2 | Biomol | Cay19030-5 | Lipid Std |
Thromboxane B2-d4 | Biomol | Cay319030-25 | Lipid Std |
Tissue Lyser II | Qiagen/ Retsch | 12120240804 | Instrumentation/Sample prep. |
Tissue Tek | Sakura Finetek | 4583 | Microscopy |
Toluidinblau | Roth | 0300.2 | Microscopy |
Vapotherm | Barkey | 4004734 | Instrumentation/Sample prep. |
Wasser LC-MS Chroma Solv | VWR | 9814920 | Solvent/LCMS |