Bu makalede doku lipidomik ve transkriptomik için modüler bir protokol ve inflamasyon ve nöronal aktivitenin altında kalan lipitleri, membran lipitlerini, aşağı akış habercilerini ve lipid fonksiyonu altında bulunan mRNA kodlayıcı enzimleri/reseptörleri hedefleyen nörolojik hastalık fare modellerinde plazma lipidomikleri sunulmaktadır. Örnekleme, numune işleme, ekstraksiyon ve nicelik prosedürleri özetlenmiştir.
Lipitler, nörolojik hastalıklara elverişli beyin hakaretleri veya uyaranlar için birincil arayüz görevi görür ve hastalıkların başlangıcını ve ilerlemesini altı çizebilecek çeşitli sinyal veya ligand işlevine sahip lipitlerin sentezi için bir rezervuardır. Genellikle presemptomatik düzeyde değişen lipitler, ortaya çıkan bir ilaç hedefi ve biyobelirteç kaynağıdır. Birçok nörolojik hastalık, kısmen spesifik lipid sinyal sistemleri tarafından modüle edilen yaygın ayırt edici özellikler olarak nöroinflamatikasyon, nörodejenerasyon ve nöronal uyarılabilirlik sergiler. Çeşitli lipitlerin sentezinin birbirine bağımlılığı ve birbiriyle olan ilgisi, nörolojik bağlamların ortak yönlerini ve özgüllüklerini türetmek ve hastalığın başlangıç ve ilerlemesinin mekanistik yönlerinin çözülmesini hızlandırmak için çok yıllı, multienzim ve multireceptor bir analize neden olur. Lipid rollerinin farklı beyin bölgelerine abone olmak, nörolojik bir hastalıkla ilişkili lipid moleküler fenotip ve morfolojinin belirlenmesini ilerletir.
Burada sunulan, belirli bir nörolojik hastalık ve/veya durumla ilgili ayrı beyin bölgelerinden çıkarılan, işlevselliğinin altında bulunan enzimlerin ve mediatörlerin mRNA’sı ile birlikte membran lipitlerinin ve aşağı akış lipit sinyallerinin analizi için uygun modüler bir protokoldür. Doğru karşılaştırmalı lipidomik profilleme sağlamak için, iş akışları ve çalışma kriterleri aşağıdakiler için optimize edilmiş ve standartlaştırılmıştır: i) ilgi alanlarının beyin örneklemesi ve diseksiyonu, ii) birden fazla lipit sinyalinin ve membran lipitlerinin birlikte çıkarılması, iii) çift lipid/mRNA ekstraksiyonu, iv) sıvı kromatografisi çoklu reaksiyon izleme (LC/MRM) ve v) standart mRNA profilleme ile niceleme. Bu iş akışı, fonksiyonel olarak ayrı beyin alt bölgelerinin örneklemesi (yani beyin delme yoluyla) ile elde edilen düşük doku miktarları için elverişlidir, böylece doku heterojenliği ve/ veya hayvan değişkenliği nedeniyle multimoleküler analizde önyargıyı önler. Nörolojik hastalıkların periferik sonuçlarını ortaya çıkarmak ve nörolojik hastalık durumlarının çevirisel moleküler okumalarını oluşturmak, periferik organ örneklemesi, işleme ve bunların sonraki lipidomik analizlerinin yanı sıra plazma lipidomikleri de takip edilir ve açıklanır. Protokol akut epilepsi fare modelinde gösterilmiştir.
Lipitlerin işlevindeki son gelişmeler ve nörolojik hastalıkların başlangıcında ve ilerlemesinde rolleri, yeni terapötik hedeflerin ve hastalık mekanizmasının yeni araştırma ve geliştirme mekanlarını açmaktadır1. Kitle spektrometresi görüntüleme ve gelişmiş kütle spektrometresi profilleme gibi modern moleküler görüntüleme teknikleri ile vurgulanan farklı beyin bölgelerindeki lipid bileşimindeki belgelenmiş farklılıklar, lipid araştırması paradigmasını tüm beyinden fonksiyonel olarak farklı ve ayrık beyin bölgelerine kaydırır. Lipid bileşiminin farklı beyin bölgelerinde farklılık göstermesi, fonksiyonel olarak farklı beyin bölgelerinde bir beyin hakaretine veya uyaranlarına yanıt olarak hem membran lipid duyarlılığının hem de aşağı akış lipid sinyalinin yeni kavramsallaştırılmasına neden olmaktadır. Bu nedenle, lipid protokolleri, daha yüksek uzamsal çözünürlük tespiti ve nicelleştirme için düşük doku miktarlarının zorluğunu ele almak için yeni gelişmeler ve eş zamanlı olarak hücre zarlarının ve sinyal yollarının birden fazla lipit bileşeninin analizini gerektirir. Ayrıca, seviyelerinin ve işlevlerinin düzenlenmesinde rol oynayan enzimlerin, lipid ligandlarının ve reseptörlerin belirlenmesi, nörolojik bir hastalıkta etkilenen sinyal yollarını aydınlatmak ve patofizyolojik bağlamda yeni mekanistik araştırmalara rehberlik etmek için çok önemlidir.
Artan beyin mekansal çözünürlüğüne ek olarak, yeni nörolipidomik yaklaşımların geliştirilmesine meydan okuyan iki büyük zorluk vardır. İlk olarak, lipid sinyal molekülleri tipik olarak membran constitutive lipits ile karşılaştırıldığında çok düşük bolluğa sahip. İkincisi, lipidom yüksek yapısal heterojenlik sergiler, tek bir analitik yaklaşım kullanarak incelenerek zor. Bu nedenle, ekstraksiyon ve analitik yöntemler farklı lipit kategorilerine göre uyarlanır ve genellikle farklı doku örneklerinde gerçekleştirilir.2. Av tüfeği lipidomik yöntemleri3 membran lipitlerin geniş bir profilini hızla ortaya çıkarmak için mükemmel araçlardır, hedeflenen keşif ve nicelik kütle spektrometrik yöntemlerinin sağladığı artan duyarlılık ve seçicilik, aşağıdakiler de dahil olmak üzere düşük bol sinyal lipitlerinin araştırılması için sermayelendirilir: i) enflamatuar lipitler ve ii) endocannabinoidler (eBB’ler), amino asit bağlantılı lipitler gibi nöronal aktivitenin modülasyonunda yer alan lipitler, ve saire.4,5. Nörolojik hastalık modellerinin beyin bölgelerinde meydana gelen hem hücre zarındaki hem de sinyalizasyon seviyesindeki lipit değişikliklerini kapsamak için, tipik olarak lipid ekstraksiyonu ve analizi, farklı hayvan partilerinden veya farklı yarımkürelerden elde edilen veya daha büyük bir doku bölgesini birden fazla parçaya ayırarak farklı doku örneklerinde gerçekleştirilir. Enzim reseptörlerinin mRNA seviyeleri de ilgi çekici olduğunda, incelemeleri tipik olarak farklı bir doku örneğinin tedarikini gerektirir. Örneğin, membran lipitleri, endojen kannabinoidler ve mRNA’nın araştırılması üç farklı doku örneği gerektirir (örneğin, iki lipid ekstraksiyon yöntemi için iki örnek-membran lipitleri ve sinyal lipitleri- ve sonraki iki lipid analiz yöntemi- ve mRNA analizi için bir örnek). İnflamatuvar lipitlerin ve endojen kannabinoidlerin araştırılması sırasıyla iki farklı doku örneği, ekstraksiyon yöntemleri ve analiz yöntemleri gerektirir. Başka bir örnek, mRNA’nın ve bir beyin yumruğu veya lazer mikrodiseksiyon örneğindeki herhangi bir lipit kategorisinin araştırılmasıdır, bu da sonuç olarak beyin (alt) bölgesi başına iki farklı hayvanın iki örnek temin etmesini gerektirir. Biyolojik değişkenlik ve/veya doku heterojenliğinden kaynaklanan bu gibi durumlarda sonuçların değişkenliğinin ve/veya zayıf tekrarlanabilirliğinin önemli ölçüde sıklıkla ortaya çıkar. Özellikle beyindeki yüksek uzamsal çözünürlükte meydana gelen bu pratik multimoleküler analiz sınırlamaları tarafından yönlendirilen üç modüllü bir nörolipidomik protokol, şunları kapsayacak şekilde tasarlanmıştır: 1) enflamatuar lipitlerin (örneğin, eikosanoidler (eiCs)) ve eB’ler gibi nöronal aktivitenin modülasyonunda rol oynayan lipitlerin LC/MRM tarafından birlikte çıkarılması ve birlikte analiz2; 2) fosfolipidlerin (PL’ler) ve eB’lerin sonraki multiscan LC /MRM ve öncül/nötr kayıp tarama analizi ile birlikte çıkarılması2; ve 3) membran (fosfo)lipitler ve eB’lerin yanı sıra mRNA’nın çift ekstraksiyonu, sonraki LC / MRM ve qPCR veya RNA dizileme analizi ile6. Nörolojik bir hastalıkta ele alınacak biyolojik soruya ve ilgi çekici beyin bölgesine bağlı olarak, birinci ve ikinci protokolün veya birinci ve üçüncü protokolün bir kombinasyonu, yaklaşık 4 mg ağırlığındaki dokular için aynı doku örneğine uygulanabilir. Birinci ve üçüncü protokoller 2 mg civarındaki dokular için bağımsız olarak uygulanabilir. İkinci protokol 0,5 mg kadar hafif dokular için uygulanabilir. Seçilen nörolipidomik protokol modülünden bağımsız olarak, doku örneklemesi ve ön analitik işleme, beyin izolasyonu ve bölge diseksiyonu ve hayvan modelinden ödün vermek için prosedür protokolün üç modülü için de standartlaştırılmış ve aynıdır. Nörolojik hastalıkları araştırmamızda, hastalığın patolojik sonuçlarıyla ilgili periferik organlar da her zaman bu modüler protokoller kullanılarak toplanır ve analiz edilir. Ek olarak, plazma lipidomik için düzenli olarak kan örneklenerek, prospektif çeviri uygulamalarına yönelik nörolojik hastalıkların okuma aracı olarak hizmet edilir. Burada sunulan modüler lipidomik protokolü çok yönlüdür: daha büyük doku miktarlarına ölçeklendirilebilir ve hemen hemen her doku tipi ve hastalığı için kolayca uygulanabilir. Modüler protokolün uygulanması için (Şekil 1) nörolojik hastalıklarda, travmatik beyin hasarı, Parkinson hastalığı, Alzheimer hastalığı veya epilepsi gibi nörolojik bozuklukların standartlaştırılmış kemirgen başlangıç ve ilerleme modeli uygundur.
Bu protokoller, insan temporal lob epilepsisine (TLE)8,9,10,11 benzerliği nedeniyle klinik öncesi çalışmalarda yaygın olarak kullanılan bir model olan epilepsinin kainik asit (KA) kaynaklı fare modelinde epilepsinin akut fazında doku lipidomu ve/veya transkriptom değişiklikleri üzerinde çalışmak için kapsamlı bir şekilde uygulanmıştır. Bu protokoller kullanılarak, Palmitoylethanolamide (PEA)12,13 gibi ilaçların terapötik potansiyeli aynı epilepsi fare modelinde değerlendirildi. Çalışmada, beyin ve periferde yüksek ve düşük mekansal çözünürlükte, maksimal akut nöbet yoğunluklarının zaman noktasında (60 dk posteizür indüksiyonunda) ve PEA ile subkronik ve akut tedavide dört farklı zaman noktasında (20, 60, 120 ve 180 dk) lipid ve mRNA değişiklikleri belirlendi. Tedavi edilmemiş KA enjekte edilmiş farelerin plazma, beyin ve periferik organları, akut ve subkronik olarak BEZELYE ile tedavi edilen farelerin yanı sıra araç ve BEZELYE aracı kontrol fareleri her zaman 12,13 noktasında toplanmış ve bu moleküler analiz ile araştırılmıştır. Moleküler veriler, akut epilepsi evresinin ilerlemesini ve PEA’nın hafifletme potansiyelini çözmek için nöbet skorlamasıyla elde edilen davranışsal fenotiplerin yanı sıra nörodejeneratif süreçler hakkında immünhistokinetri türetilmiş verilerle ilişkiliydi.
Burada açıklanan nörolipidomik ve transkriptomik metodoloji, beyin ve periferik organlarda yüksek ve düşük mekansal çözünürlükte herhangi bir hastalığı veya sağlıklı gelişimi araştırmak için uygun bir ortalamadır. Optimize edilmiş plazma örnekleme ve elleçleme prosedürleri nedeniyle, doku lipidomik ve transkriptomik için kurban edilen aynı hayvanlardan plazma lipidomik analizi de yapılabilir, böylece doku kanı moleküler korelasyonlarının ve biyobelirteç keşfinin güvenilirliği artır…
The authors have nothing to disclose.
Bu makaleyi Dr. Ermelinda Lomazzo’ya ithaf ediyoruz. Bu makalenin son uzaması sırasında Dr. Ermelinda Lomazzo vefat etti. Bilime olan tutkunun ve anlamlı bir araştırma amacını yerine getirmek için ekip çalışmasına özverili katılımın vücut bulmuş halidir. Her zaman insanların daha iyi olmasına anlamlı bir şekilde katkıda bulunmayı hayal etti. Onun iyi kalpli doğası, bilimin ve yaşamın yorucu yollarından asla ödün vermedi. Paha biçilmez ve sonsuza dek kalbimizde kalacak.
Julia M. Post, Johannes Gutenberg Üniversitesi Mainz Üniversitesi Tıp Merkezi’nde Çevirisel Sinirbilim Için Odak Programı (FTN) tarafından finanse edildi ve şu anda LB’ye SPP-2225 EXIT projesi tarafından finanse ediliyor Raissa Lerner, DZHK projesi 81X2600250 tarafından LB ve Lipidomics Çekirdek Tesisi’ne kısmen finanse edildi. Bu çalışmalar için kısmi finansman, Johannes Gutenberg Üniversitesi Mainz Üniversitesi Tıp Merkezi’nden Lipidomics Çekirdek Tesisi, Fizyolojik Kimya Enstitüsü ve Intramural fonlar (LB’ye) tarafından sağlanmıştır.
12(S)-HETE | Biomol | Cay10007248-25 | Lipid Std |
12(S)-HETE-d8 | Biomol | Cay334570-25 | Lipid Std |
1200 series LC System | Agilent | Instrumentation/LCMS | |
2100 Bioanalyzer | Agilent | Instrumentation/qPCR | |
5(S)-HETE-d8 | Biomol | Cay 334230 | Lipid Std |
ABI 7300 Real-Time PCR cycler | Applied Biosystems | Instrumentation/qPCR | |
Acetonitrile LC-MS Chroma Solv | Honeywell | 9814920 | Solvent/LCMS |
amber eppendorf tubes | Eppendorf | Sample Prep. | |
Analyst 1.6.2 Software | AB SCIEX, Darmstadt | Software | |
Analytical balance | Mettler Toledo | Instrumentation/Sample prep. | |
Arachidonic Acid-d8 MS Standard | Biomol | Cay-10007277 | Lipid Std |
Bessmann Tissue Pulverizer | Spectrum Laboratories, Inc. (Breda, Netherlands) | Instrumentation/Sample prep. | |
Bino | Zeiss | Microscopy | |
cleaved Caspase 3 antibody | Cellsignaling | 9661S | Microscopy |
Cryostat, Leica CM3050 S | Leica Biosystems | Instrumentation/Sample prep. | |
CTC HTC PAL autosampler | CTC Analytics AG | Instrumentation/LCMS | |
Dumont Curved Forceps Dumoxel #7 | FST | 11271-30 | Surgical Tools |
Dumont Forceps Super fine tip #5SF (x2) | FST | 11252-00 | Surgical Tools |
EDTA 1000 A Röhrchen | Kabe Labortechnik | 078001 | Sample Prep. |
EP-1 EconoPump | BioRAD | 700BR07757 | Instrumentation/Sample prep. |
Fine Forceps Mirror Finish | FST | 11412-11 | Surgical Tools |
Fine Iris Scissors straight sharp | FST | 14094-11 | Surgical Tools |
Fine Scissor Tungsten Carbide straight | FST | 14568-09 | Surgical Tools |
Iris Spatulae | FST | 10094-13 | Surgical Tools |
Kainic acid | Abcam | ab120100 | Epileptic drug |
Lipid View software | AB SCIEX, Darmstadt | Software | |
LPC 17:0 | Avanis Polaris | 855676P | Lipid Std |
LPC 18:0 | Avanis Polaris | 855775P | Lipid Std |
Luna 2,5µm C18(2)- HAST 100A LC column | Phenomenex | 00D-4446-B0 | Instrumentation/LCMS |
Magnifying lamp | Maul GmbH | Instrumentation/Sample prep. | |
Methanol LC-MS Chroma Solv 99.9% | Honeywell | 9814920 | Solvent/LCMS |
Motic Camara | Motic | Microscopy | |
MTBE | Honeywell | 34875-1L | Solvent/LCMS |
MultiQuant 3.0 quantitation software package | AB SCIEX, Darmstadt | Software | |
NanoDrop 2000c Spectrophotometer | Thermo Scientific | Instrumentation/qPCR | |
PA 16:0-18:1 | Avanis Polaris | 840857P | Lipid Std |
PA 17:0-14:1 | Avanis Polaris | LM-1404 | Lipid Std |
Palmitoyl Ethanolamide | Biomol | Cay90350-100 | Lipid Std |
Palmitoyl Ethanolamide-d5 | Biomol | Cay9000573-5 | Lipid Std |
PC 16:0-18:1 | Avanis Polaris | 850457P | Lipid Std |
PC 16:0-18:1 | Avanis Polaris | 850457P | Lipid Std |
PC 17:0-14:1 | Avanis Polaris | LM-1004 | Lipid Std |
PE 16:0-18:1 | Avanis Polaris | 850757P | Lipid Std |
PE 17:0-14:1 | Avanis Polaris | LM-1104 | Lipid Std |
PG 16:0-18:1 | Avanis Polaris | 840457P | Lipid Std |
PG 17:0-14:1 | Avanis Polaris | LM-1204 | Lipid Std |
PI 17:0-14:1 | Avanis Polaris | LM-1504 | Lipid Std |
Precelleys 24 | Peqlab | Instrumentation/Sample prep. | |
Precellys Keramik-Kügelchen | Peqlab | 91-pcs-ck14p | Sample Prep. |
Precellys Stahlkugeln 2,8mm | Peqlab | 91-PCS-MK28P | Sample Prep. |
Precellys-keramik-kit 1,4 mm | VWR | 91-PCS-CK14 | Sample Prep. |
Prostaglandin D2 | Biomol | Cay 12010 | Lipid Std |
Prostaglandin D2-d4 | Biomol | Cay 312010 | Lipid Std |
Prostaglandin E2 | Biomol | Cay10007211-1 | Lipid Std |
Prostaglandin E2-d9 | Biomol | Cay10581-50 | Lipid Std |
PS 17:0-14:1 | Avanis Polaris | LM-1304 | Lipid Std |
Q Trap 5500 triple-quadrupole linear ion trap MS | AB SCIEX | AU111609004 | Instrumentation/LCMS |
Real Time PCR System | Appliert Biosystem | Instrumentation/qPCR | |
Resolvin D1 | Biomol | Cay10012554-11 | Lipid Std |
Rneasy Mini Kit – RNAase-Free DNase Set (50) | Qiagen | 79254 | Sample Prep. |
Security Guard precolumn | Phenomenex | Instrumentation/LCMS | |
Shandon coverplates | Thermo Fisher | 72110017 | Microscopy |
Shandon slide rack and lid | Thermo Fisher | 73310017 | Microscopy |
SM 18:0 | Avanis Polaris | 860586P | Lipid Std |
SM d18:1/12:0 | Avanis Polaris | LM-2312 | Lipid Std |
Standard Forceps straight Smooth | FST | 11016-17 | Surgical Tools |
Surgical Scissor ToughCut Standard Pattern | FST | 14130-17 | Surgical Tools |
T3000 Thermocycler | Biometra | Instrumentation/qPCR | |
Thromboxane B2 | Biomol | Cay19030-5 | Lipid Std |
Thromboxane B2-d4 | Biomol | Cay319030-25 | Lipid Std |
Tissue Lyser II | Qiagen/ Retsch | 12120240804 | Instrumentation/Sample prep. |
Tissue Tek | Sakura Finetek | 4583 | Microscopy |
Toluidinblau | Roth | 0300.2 | Microscopy |
Vapotherm | Barkey | 4004734 | Instrumentation/Sample prep. |
Wasser LC-MS Chroma Solv | VWR | 9814920 | Solvent/LCMS |