このプロトコルは、可視化された定量のガス固体結合試験システムを使用して、ブリケットサンプルを調製し、異なるCO2圧力のブリケットを用いて単軸圧縮実験を行う方法を示しています。また、CO2吸着によって引き起こされる石炭の物理的・機械的特性の変化を調査することを目的としています。
深い石炭の継ぎ目に二酸化炭素(CO2)を注入することは、大気中の温室効果ガスの濃度を低減し、石炭メタンの回収を増加させる上で大きな意義があります。CO2吸収が石炭の物理的および機械的特性に及ぼす影響を調べるために、可視化された一定量のガス固体結合システムを導入する。一定の容積を維持し、カメラを使用してサンプルを監視することができるので、このシステムは器械の正確さを改善し、フラクタル幾何学の方法によって骨折の進化を分析する可能性を提供する。このホワイトペーパーでは、ガス固体カップリング試験システムを用いて異なるCO2圧力のブリケットサンプルを用いて単軸圧縮実験を行うすべてのステップを提供する。原料石炭とハメートセメントで冷間プレスされたブリケットを高圧CO2に装填し、カメラを使用してリアルタイムで表面を監視します。しかし、ブリケットと生石炭の類似性は依然として改善が必要であり、メタン(CH4)などの可燃性ガスを試験用に注入することはできません。その結果、CO2吸着がブリケットのピーク強度と弾性率の低下につながり、故障状態におけるブリケットの破壊進化はフラクタル特性を示す。強度、弾性率、およびフラクタル寸法はすべて CO2圧力と相関しますが、線形相関とは相関しません。可視化され、定量のガス固体結合試験システムは、マルチフィールド結合効果を考慮した岩盤力学に関する実験研究のプラットフォームとして機能します。
大気中のCO2濃度の上昇は、地球温暖化の影響を引き起こす直接的な要因です。石炭の吸収能力が高いため、石炭継ぎ目におけるCO2隔離は、温室効果ガス1、2、3の世界的な排出を削減する実用的で環境に優しい手段とみなされています。同時に、注入されたCO2はCH4を置き換えることができ、石炭メタン回収(ECBM)4、5、6におけるガス生産促進をもたらす。CO2隔離の生態学的・経済的見通しは、最近、研究者の間だけでなく、異なる国際的な環境保護グループや政府機関の間で世界的な注目を集めています。
石炭は、細孔、骨折、石炭マトリックスからなる不均一で構造的に異方性の岩石です。細孔構造は、大量のガスを吸着することができ、ガス隔離に重要な役割を果たすことができる大きな特定の表面積を有し、骨折は、自由ガス流7、8のための主要な経路である。この独特な物理的構造はCH4およびCO2のための大きいガス吸着容量につながる。鉱山ガスは、いくつかの形態で石炭に堆積される:(1)微細孔と大きな細孔の表面に吸着。(2)石炭分子構造に吸収される。(3)骨折や大きな毛穴のフリーガスとして;(4)堆積水に溶解する。CH4およびCO2に対する石炭の吸着挙はマトリックス腫脹を引き起こし、さらなる研究は、それが不均一なプロセスであり、石炭リソタイプ9、10、11に関連していることを示している。また、ガス吸着は、石炭12、13、14の構成関係に損傷を与える可能性がある。
生石炭試料は、一般に石炭およびCO2結合実験で使用されます。具体的には、炭鉱の作業面から大きな生石炭を切断してサンプルを調作する。しかし、生石炭の物理的・機械的特性は、石炭の継ぎ目における自然毛穴や骨折のランダムな空間分布により、必然的に高い分散度を有する。また、ガスベアリング石炭は柔らかく、形状を変えるのが難しい。直交実験法の原理によれば、生石炭粉末およびセメントで再構成されるブリケットは、石炭吸着試験15、16で使用される理想的な材料とみなされている。金属金型で冷間プレスされているので、その強度は、セメントの量を調整することによって予め設定され、安定したままであり、単一変数効果の比較分析に利点があります。また、ブリケット試料の多孔性は~4~10倍であるが、生石炭試料のそれと同様の吸着・脱着特性及び応力歪み曲線が実験研究17,18で見出された。,19歳,20.本論文では、ブリケット21を調製するために、ガスベアリング石炭に対する同様の材料のスキームが採用されている。原石炭は、中国安寧省華南省の新珠江炭鉱4671B6作業面から採取された。石炭の継ぎ目は地下約450m、海抜360mで、約15°、厚さ約1.6mです。ブリケットサンプルの高さと直径はそれぞれ100mmと50mmで、これは国際岩力学会(ISRM)22が推奨するサイズです。
実験室条件下でのガスベアリング石炭実験のための以前の単軸または三軸負荷試験装置は、仲間23、24、25、26として提示されたいくつかの不足と制限を有する 、27,28: (1) ローディングプロセス中に、容器の容積はピストンの移動に伴って減少し、ガス圧力の変動およびガス吸着の乱れを引き起こす。(2)サンプルのリアルタイム画像監視、高ガス圧環境での周変形測定は行いにくい。(3)それらは、機械的応答特性を分析するために、プリロードされたサンプルの動的負荷障害の刺激に限定される。ガス固体結合状態における器具の精度とデータ取得を向上させるために、(図1)可視化積載容器を含む可視化・定量試験システム29を開発した。コアコンポーネントである一定の容積チャンバー、(2)真空チャネル、2つの充填チャネル、および放出チャネルを備えたガス充填モジュール。(3)電気油圧サーボユニバーサル試験機と制御コンピュータからなる軸ローディングモジュール。(4)周回変位測定装置、ガス圧センサ、及び可視積載容器の窓にカメラで構成されるデータ集録モジュール。
コア可視化容器(図2)は、2つの調整シリンダが上部プレート上に固定され、ピストンがビームを通るローディング1と同時に移動するように特別に設計されており、ローディングピストンの断面積は、調整シリンダーの合計。内側の穴と柔らかいパイプを通って流れ、容器と2つのシリンダーの高圧ガスが接続されています。従って、容器積載ピストンが下方に移動し、ガスを圧縮するとき、この構造は容積の変化を相殺し、圧力干渉を除去できる。さらに、ピストンにかかる巨大なガス誘導カウンターフォースは、試験中に防止され、機器の安全性が大幅に向上します。強化されたホウ酸塩ガラスが装備され、容器の3つの側面に置かれている窓はサンプルの写真を撮るための直接の方法を提供する。このガラスは正常にテストされ、低い膨張率、高い強さ、光透過率および化学安定性29の10 MPaガスまで抵抗することを証明した。
本論文では、新たに可視化され、定量のガス固体結合試験システムを用いてCO2-ベアリング石炭の単軸圧縮実験を行う手順について説明する。生の石炭粉末とフマテナトリウムを使用したサンプル、ならびに高圧CO2を注入し、単軸圧縮を行う連続したステップ。全体のサンプル変形プロセスは、カメラを使用して監視されます。この実験的アプローチは、ガスベアリング石炭の吸着誘発損傷および破壊進化特性を定量的に分析する別の方法を提供する。
高圧ガスの危険性を考慮すると、テスト中にいくつかの重要なステップが重要です。弁およびOリングは定期的に点検され、取り替えられるべきであり、点火の源は実験室で許可されるべきではない。手動圧力調整弁を使用する場合、実験者はバルブをゆっくりとねじり、可視化された容器内の圧力を徐々に増加させる必要があります。試験中に容器を分解しないでください。実験が終了した…
The authors have nothing to disclose.
この研究は、中国国家主要科学機器開発プロジェクト(助成金第51427804号)と山東省国立自然科学財団(助成金第1号)によって支援されました。ZR2017MEE023)。
3Y-Leica MPV-SP photometer microphotometric system | Leica,Germany | M090063016 | Used for vitrinite reflectance measurement |
Automatic isotherm adsorption instrument | BeiShiDe Instrument Technology (Beijing)CO.,Ltd. | 3H-2000PH | Isothermal adsorption test |
Electro hydraulic servo universal testing machine | Jinan Shidaishijin testing machine CO.,Ltd | WDW-100EIII | Used to provide axial pressure |
Gas pressure sensor | Beijing Star Sensor Technology CO.,LTD | CYYZ11 | Gas pressure monitoring |
Gas tank(carbon dioxide/helium) | Heifei Henglong Gas.,Ltd | Gas resource | |
high-speed camera | Sony corporation | FDR-AX30 | Image monitoring |
Incubator | Yuyao YuanDong Digital Instrument Factory | XGQ-2000 | Briquette drying |
jaw crusher | Hebi Tianke Instrument CO.,Ltd | EP-2 | Coal grinding |
Manual pressure reducing valve | Shanghai Saergen Instrument CO.,Ltd | R41 | Outlet gas pressure adjustment |
Proximate Analyzer | Changsha Kaiyuan Instrument CO.,Ltd | 5E-MAG6700 | Coal industrial analysis |
Resistance strain gauge | Jinan Sigmar Technology CO.,LTD | ASMB3-16/8 | Poisson ratio measurement |
Sieve shaker (6,16mesh) | Hebi Tianguan Instrument CO.,Ltd | GZS-300 | Coal powder shelter |
Soft pipe | Jinan Quanxing High pressure pipe CO.,Ltd | Inner diameter=5 mm maximal pressure=30 MPa |
|
Standard rock sample circumferential deformation test apparatus | Huainan Qingda Machinery CO.,Ltd | Circumferential deformation acquisition |
|
Strain controlled direct shear apparatus |
Beijing Aerospace Huayu Test Instrument CO.,LTD | ZJ-4A | Tensile strength, cohesion, internal friction angle measurement |
Vaccum pump | Fujiwara,Japan | 750D | Used to vaccumize the vessel |
Valve | Jiangsu Subei Valve Co.,Ltd | S4 NS-MG16-MF1 | Gas seal |
Visual loading vessel | Huainan Qingda Machinery CO.,Ltd | Instrument for sample loading and real-time monitoring |