Dieses Protokoll zeigt, wie eine Brikettprobe vorbereitet wird und ein uniaxiales Kompressionsexperiment mit einem Brikett in verschiedenen CO2-Drücken mit einem visualisierten und konstanten Gas-Fest-Kopplungstestsystem durchgeführt wird. Außerdem sollen Veränderungen in Bezug auf die physikalischen und mechanischen Eigenschaften von Kohle untersucht werden, die durch die CO2-Adsorption induziert werden.
Die Injektion vonKohlendioxid (CO2 ) in eine tiefe Kohlenflöz ist von großer Bedeutung für die Verringerung der Konzentration von Treibhausgasen in der Atmosphäre und die Erhöhung der Rückgewinnung von Kohlenmethan. Hier wird ein visualisiertes und volumengleich gasfestes Kopplungssystem eingeführt, um den Einfluss der CO2-Sorpttion auf die physikalischen und mechanischen Eigenschaften von Kohle zu untersuchen. Da dieses System in der Lage ist, ein konstantes Volumen zu halten und die Probe mit einer Kamera zu überwachen, bietet es das Potenzial, die Instrumentengenauigkeit zu verbessern und die Bruchentwicklung mit einer fraktalen Geometriemethode zu analysieren. Dieses Papier enthält alle Schritte, um ein uniaxiales Kompressionsexperiment mit einer Brikettprobe in verschiedenen CO2-Drücken mit dem Gas-Fest-Kupplungsprüfsystem durchzuführen. Ein Brikett, kaltgepresst durch Rohkohle und Natriumhumatezement, wirdin Hochdruck-CO2 geladen und seine Oberfläche wird in Echtzeit mit einer Kamera überwacht. Die Ähnlichkeit zwischen Brikett und Rohkohle muss jedoch noch verbessert werden, und einbrennbares Gas wie Methan (CH 4) kann für den Test nicht injiziert werden. Die Ergebnisse zeigen, dass CO 2-Sorption führt zu Spitzenfestigkeit und elastische Modulreduktion der Briketts, und die Frakturentwicklung der Brikettin in einem Ausfallzustand zeigt fraktale Eigenschaften. Die Festigkeit, der elastische Modul und die fraktale Dimension sind alle mit dem CO2-Druck korreliert, jedoch nicht mit einer linearen Korrelation. Das visualisierte und volumengleich gasfeste Kopplungsprüfsystem kann als Plattform für experimentelle Forschungen zur Gesteinsmechanik unter Berücksichtigung des Multifield-Kopplungseffekts dienen.
Die zunehmende Konzentration von CO2 in der Atmosphäre ist ein direkter Faktor, der den Globalen Erwärmungseffekt verursacht. Aufgrund der starken Sorptionskapazität von Kohle wird die CO2-Sequestrierung in einer Kohleflöz als praktisches und umweltfreundliches Mittel zur Verringerung der weltweiten Emission von Treibhausgasen1,2,3angesehen. Gleichzeitig kann das injizierteCO2 CH4 ersetzen und zur Förderung der Gasförderung bei der Gewinnung von Kohlenmethan (ECBM)4,5,6führen. Die ökologischen und wirtschaftlichen Aussichten der CO2-Sequestrierung haben in jüngster Zeit weltweit Aufmerksamkeit bei Forschern sowie bei verschiedenen internationalen Umweltschutzgruppen und Regierungsbehörden erregt.
Kohle ist ein heterogenes, strukturell anisotropes Gestein, das aus einer Pore, einer Fraktur und einer Kohlematrix besteht. Die Porenstruktur hat eine große spezifische Oberfläche, die eine große Menge gasadsorbieren kann, spielt eine wichtige Rolle bei der Gassequestrierung, und die Fraktur ist der Hauptweg für freien Gasfluss7,8. Diese einzigartige physikalische Struktur führt zu einer großen Gasadsorptionskapazität für CH4 und CO2. Grubengas wird in einer Koalvierung in einigen Formen abgelagert: (1) adsorbiert auf der Oberfläche von Mikroporen und größeren Poren; (2) in die Kohlenmolekülstruktur aufgenommen werden; (3) als freies Gas in Frakturen und größeren Poren; und (4) in Ablagerungswasser gelöst. Das Sorptionsverhalten von Kohle zu CH4 und CO2 verursacht Matrixschwellungen, und weitere Studien zeigen, dass es sich um einen heterogenen Prozess handelt und mit den Kohlelithotypen9,10,11zusammenhängt. Darüber hinaus kann die Gassorption zu Schäden im konstitutiven Verhältnis von Kohle12,13,14führen.
Die Rohkohleprobe wird in der Regel in Kohle- und CO2-Kopplungsexperimenten verwendet. Insbesondere wird ein großes Stück Rohkohle aus der Arbeitsfläche in einem Kohlebergwerk geschnitten, um eine Probe vorzubereiten. Die physikalischen und mechanischen Eigenschaften von Rohkohle haben jedoch aufgrund der zufälligen räumlichen Verteilung natürlicher Poren und Brüche in einer Kohleflöz unweigerlich einen hohen Dispersionsgrad. Darüber hinaus ist die gasführende Kohle weich und schwer umzuformen. Nach den Prinzipien der orthogonalen Versuchsmethode gilt das Brikett, das mit Rohkohlepulver und Zement rekonstituiert wird, als ideales Material, das im Kohlesorptionstest15,16verwendet wird. Da sie mit Metalldüsen kaltgepresst wird, kann ihre Festigkeit voreingestellt werden und bleibt stabil, indem die Zementmenge angepasst wird, was der vergleichenden Analyse des einvariablen Effekts zugute kommt. Obwohl die Porosität der Brikettprobe das 4-10-fache beträgt, wurden in der experimentellen Forschung ähnliche Adsorptions- und Desorptionseigenschaften und Spannungs-Dehnungs-Kurve gefunden17,18 , 19 , 20. In diesem Papier wurde ein Schema eines ähnlichen Materials für gashaltige Kohle zur Herstellung des Briketts21angenommen. Die Rohkohle wurde aus dem 4671B6 Arbeitsgesicht in der Xinzhuangzi Kohlemine, Huainan, Provinz Anhui, China genommen. Die Kohlenflöze ist etwa 450 m unter dem Boden und 360 m unter dem Meeresspiegel, sinkt bei etwa 15° und ist etwa 1,6 m dick. Die Höhe und der Durchmesser der Brikettprobe betragen 100 mm bzw. 50 mm, was der empfohlenen Größe entspricht, die von der International Society for Rock Mechanics (ISRM)22empfohlen wird.
Die bisherigen uniaxialen oder triaxialen Belastungsprüfgeräte für gasgelagerte Kohleexperimente unter Laborbedingungen haben einige Engpässe und Grenzen, dargestellt als Stipendiaten23,24,25,26 ,27,28: (1) während des Ladevorgangs nimmt das Behältervolumen mit der Bewegung des Kolbens ab, was zu Schwankungen des Gasdrucks und Störungen der Gassorption führt; (2) Die Echtzeit-Bildüberwachung von Proben sowie umlaufende Verformungsmessungen in einer Umgebung mit hohem Gasdruck sind schwierig durchzuführen; (3) Sie beschränken sich auf die Stimulierung dynamischer Laststörungen an vorbelasteten Proben zur Analyse ihrer mechanischen Reaktionseigenschaften. Um die Gerätegenauigkeit und Datenerfassung im Zustand der Gas-Festkupplung zu verbessern, wurde ein visualisiertes und volumengleich gelastetes Prüfsystem29 entwickelt (Abbildung 1), einschließlich (1) eines visualisierten konstante Volumenkammer, die die Kernkomponente ist; (2) ein Gasfüllmodul mit einem Vakuumkanal, zwei Füllkanälen und einem Freigabekanal; (3) ein axiales Lademodul, das aus einer elektrohydraulischen Servo-Universalprüfmaschine und einem Steuerrechner besteht; (4) ein Datenerfassungsmodul, das aus einem Umfänger-Verdrängungsmessgerät, einem Gasdrucksensor und einer Kamera am Fenster des visualisierten Ladebehälters besteht.
Das magnetisierte Kerngefäß (Abbildung 2) ist speziell so konzipiert, dass zwei Verstellzylinder auf der oberen Platte befestigt sind und ihre Kolben sich gleichzeitig mit dem Ladebehälter durch einen Strahl bewegen, und die Schnittfläche des Ladekolbens gleich dem Summe der der Einstellzylinder. Durch ein inneres Loch und weiche Rohre fließt das Hochdruckgas im Behälter und die beiden Zylinder sind miteinander verbunden. Wenn sich der Behälterladekolben nach unten bewegt und das Gas komprimiert, kann diese Struktur die Volumenänderung ausgleichen und Druckstörungen eliminieren. Darüber hinaus wird die enorme gasinduzierte Gegenkraft, die auf den Kolben ausgeübt wird, während des Tests verhindert, was die Sicherheit des Instruments erheblich verbessert. Die Fenster, die mit gehärtetem Borosilikatglas ausgestattet sind und sich auf drei Seiten des Schiffes befinden, bieten eine direkte Möglichkeit, die Probe zu fotografieren. Dieses Glas wurde erfolgreich getestet und erwies sich als bis zu 10 MPa Gas mit einer niedrigen Ausdehnungsrate, hoher Festigkeit, Lichtdurchlässigkeit und chemischer Stabilität29.
Dieser Artikel beschreibt das Verfahren zur Durchführungeines uniaxialen Kompressionsexperiments von CO2-lagernder Kohle mit dem neuen visualisierten und konstantvolumigen Gas-Fest-Kopplungs-Prüfsystem, das die Beschreibung aller Teile enthält, die ein Brikett vorbereiten. Probe mit Rohkohlepulver und Natriumhumat, sowie die aufeinanderfolgenden Schritte zur Injektion von Hochdruck-CO2 und Durchführung uniaxialer Kompression. Der gesamte Probenverformungsprozess wird mit einer Kamera überwacht. Dieser experimentelle Ansatz bietet eine alternative Möglichkeit, die adsorptionsinduzierten Schäden und die Bruchentwicklung, die für gashaltige Kohle charakteristisch sind, quantitativ zu analysieren.
Angesichts der Gefahr von Hochdruckgas sind während des Tests einige kritische Schritte wichtig. Die Ventile und O-Ringe sollten regelmäßig überprüft und ausgetauscht werden, und jede Zündquelle sollte im Labor nicht zugelassen werden. Bei Verwendung des manuellen Druckregelventils sollte der Experimentator das Ventil langsam verdrehen, um den Druck im visualisierten Gefäß schrittweise zu erhöhen. Zerlegen Sie das Gefäß während der Prüfung nicht. Wenn das Experiment abgeschlossen ist, sollte die Hintertür d…
The authors have nothing to disclose.
Diese Arbeit wurde vom China National Major Scientific Instruments Development Project (Grant No. ZR2017MEE023).
3Y-Leica MPV-SP photometer microphotometric system | Leica,Germany | M090063016 | Used for vitrinite reflectance measurement |
Automatic isotherm adsorption instrument | BeiShiDe Instrument Technology (Beijing)CO.,Ltd. | 3H-2000PH | Isothermal adsorption test |
Electro hydraulic servo universal testing machine | Jinan Shidaishijin testing machine CO.,Ltd | WDW-100EIII | Used to provide axial pressure |
Gas pressure sensor | Beijing Star Sensor Technology CO.,LTD | CYYZ11 | Gas pressure monitoring |
Gas tank(carbon dioxide/helium) | Heifei Henglong Gas.,Ltd | Gas resource | |
high-speed camera | Sony corporation | FDR-AX30 | Image monitoring |
Incubator | Yuyao YuanDong Digital Instrument Factory | XGQ-2000 | Briquette drying |
jaw crusher | Hebi Tianke Instrument CO.,Ltd | EP-2 | Coal grinding |
Manual pressure reducing valve | Shanghai Saergen Instrument CO.,Ltd | R41 | Outlet gas pressure adjustment |
Proximate Analyzer | Changsha Kaiyuan Instrument CO.,Ltd | 5E-MAG6700 | Coal industrial analysis |
Resistance strain gauge | Jinan Sigmar Technology CO.,LTD | ASMB3-16/8 | Poisson ratio measurement |
Sieve shaker (6,16mesh) | Hebi Tianguan Instrument CO.,Ltd | GZS-300 | Coal powder shelter |
Soft pipe | Jinan Quanxing High pressure pipe CO.,Ltd | Inner diameter=5 mm maximal pressure=30 MPa |
|
Standard rock sample circumferential deformation test apparatus | Huainan Qingda Machinery CO.,Ltd | Circumferential deformation acquisition |
|
Strain controlled direct shear apparatus |
Beijing Aerospace Huayu Test Instrument CO.,LTD | ZJ-4A | Tensile strength, cohesion, internal friction angle measurement |
Vaccum pump | Fujiwara,Japan | 750D | Used to vaccumize the vessel |
Valve | Jiangsu Subei Valve Co.,Ltd | S4 NS-MG16-MF1 | Gas seal |
Visual loading vessel | Huainan Qingda Machinery CO.,Ltd | Instrument for sample loading and real-time monitoring |