Transimmünizasyon (TI) cihaz veya plaka ve ilgili protokoller, deneysel bir ortamda, ekstrorporeal fotokemoterapi (ECP) temel özelliklerini çoğaltmak için geliştirilmiştir, fizyolojik olarak aktif, ayarlanabilir dendritik üretimi için izin kanser immünoterapi için hücreler (DCs).
Ekstrorporeal fotokemoterapi (ECP), deri T hücreli lenfoma (CTCL) için yaygın olarak kullanılan bir kanser immünoterapi olduğunu, dünya çapında 350 üzerinde üniversite merkezlerinde operatif. ECP ‘nin klinik etkinliği ve örnek güvenlik profili, yaygın kullanımını tahrik ederken, altta yatan mekanizmaların elucidasyonu kısmen laboratuvar ECP modelinin eksikliği nedeniyle bir zorluk olarak kalmıştır. Bu engeli aşmak ve ECP araştırması için basit, Kullanıcı dostu bir platform oluşturmak için, hem fare modelleri hem de küçük insan kanı örnekleri ile çalışmak için uygun olan klinik ECP lökosit işleme cihazının ölçekli bir sürümünü geliştirdik. Bu cihaz Transimmünizasyon (TI) odası veya plaka olarak adlandırılır. Landmark deneyler bir dizi, minyatür cihaz düzenli olarak çeşitli syngeneic fare tümörü modellerinde Terapötik anti-kanser dokunulmazlık başlatılan bir hücresel aşı üretmek için kullanıldı. Deneysel sistemden bireysel faktörleri kaldırarak ve In vivo anti-tümör tepkisini ascertaining, daha sonra ECP immünizing potansiyelinin anahtar mekanik sürücüleri aydınlatılamamıştır. Topluca, sonuçlarımız ECP ‘nin anti-tümör etkilerinin dendritik hücreler (DC) tarafından başlatıldığını, kan monoksit etkileşimi ile fizyolojik olarak TI plakasında trombositlerle oluşturulduğunu ve apoptotik hücre olan tümör hücrelerinden antijenlerle birlikte yüklendiğini ortaya koydu. Ölüm ince photoactivatable DNA çapraz bağlama Ajan 8-Methoxypsoralen ve UVA ışık (8-MOPA) maruz tarafından titoy edilir. Fare döndüğünde, bu hücresel aşı belirli ve devredilebilir anti-tümör T hücre bağışıklık yol açar. TI odasının, insan kan işleme için de uygun olduğunu doğruladıktan sonra, insan DCs ‘yi, aktivasyon durumu ve profilinde klinik ECP odasından elde edilen tamamen karşılaştırılabilir bir şekilde üretmektedir. Burada sunulan protokoller, fare ve adam içinde ECP çalışmaları, 8-MOPaile apoptotik tümör hücrelerinin kontrollü üretimi ve çeşitli uygulamalar için fizyolojik insan ve fare monoksit türevi DCS üretimi için tasarlanmıştır.
Ekstrorporeal fotokemoterapi (ECP), dünya çapında üniversite merkezlerinde yaygın olarak ameliyat edilen, kurulan bir immünoterapi yöntemidir. Kullanımı, benzersiz seçicilik, güvenlik ve ECP tedavisinin iki yönlü etkinliğini, ECP ‘nin fiziksel bağışıklık sistemi ile paylaştığı özellikleri ile ortak göründüğü şekilde tahrik edilmiştir. ECP, kutanöz T hücreli lenfoma (CTCL)1,2‘ deki malign hücrelere karşı seçici bir şekilde immünize edilir ve nakil, otoimmünite ve Graft-versus-Host hastalığı (GVHD) ayarlarında hedeflenen antijenler için seçici olarak tolerans göstermesidir 3 ‘ ü , 4. ECP ‘nin IMMÜNOGENISITE CTCL5‘ te sağlam bir CD8 T hücre bölmesine bağımlılığı ile vurgulanırken, özgüllük ECP ‘nin çok uygun yan reaksiyon profiline yansıtıldığı halde, nakil esnasında hiçbir off-Target immün bastırma veya GvHD ayarları ve CTCL ‘de patojenik olmayan T hücresi klonların potansiyel olarak malign T hücreleriyle birlikte kaybolabilen fırsatçı enfeksiyon duyarlılığını arttırmaz.
ECP ‘nin klinik önemini göz önüne alındığında, mekanizmalarının daha iyi anlaşılması, ECP ‘nin terapötik ulaşmalarını daha geniş bir kanser spektrumuna ve immünolojik bozukluklara kadar genişletebileceğini umut etmek Uluslararası çıkarları uyarmıştır. Ulusal Sağlık Enstitüleri (NıH) devlet-of-the-bilim Sempozyumu6 ve Amerikan Apheresis Uzlaşma Konferansı7‘ ye ait iki yurt içi onaylı atölye çalışmaları, yapılan ve raporlanan, ECP anti-kanser ve tolerogenic etkileri asıl hücresel katkıda bulunanların tanımlaması.
Bugüne kadar, ECP ‘nin mekanizmasına hitap etmeye çalışan çok sayıda yayınlanmış rapor olmasına rağmen, iki birincil engel bilimsel gelişmeleri engellemişlerdir. Öncelikle, deneysel laboratuar ortamında ECP mekanizmalarının incelenmesi, ECP ‘nin hücresel ve in vivo efektlerini tamamen yansıtan ve hayvan modelleri için uygulanabilir olan minyatür ECP cihazının eksikliği ile sınırlıdır. İkincisi, klinik ortamda ECP örneklerinin derinlemesine laboratuar analizi, tedavi merkezlerine erişim gerektiren ECP-işlenmiş hasta bağışıklık hücrelerinin sınırlı mevcudiyeti ile kısıtlanmıştır ve ayrıca hastanın infüzyon ve hasta-reinfkullanılan lökositlerin ödün olmayan setleri için etik ihtiyaç.
ECP araştırmalarının ilerlemesini engelleyen engelleri çözmek için, tedavinin temel unsurlarını en yakından taklit eden minyatür bir ECP aparatı geliştirmek için dışarı çıkıyoruz. Standart ECP tedavisi, 1 mm kalınlığında, ultraviyole bir ışık (UVA)-şeffaf, plastik plaka6,8ile bir hastanın lökootezi zenginleştirilmiş löokaytlardan geçişini içerir. Plakada, lökositler 8-Methoxypsoralen (8-MOP), UVA pozlama üzerine bir fotoğraf-activatable Ajan maruz geçici bir reaktif forma dönüştürülür (8-MOPa), DNA çapraz-pirimidin üsleri onun iki bivalent bağlama yoluyla bağlama yeteneğine kardeş DNA ipleri9,10. İşlenmiş, 8-MOPA-tedavi lökositler toplanır ve Hastaya intravenöz olarak döndürülür.
ECP kendisi iki yönlü bir tedavi olduğundan, kanserde immünizing ve nakli, otoimmünite ve GvHD ayarlarında toleranasyon, açıklama için biz model ECP ‘s bağışıklığı modu “transimmünizasyon” ve tolerogenic modu “transtolerization” adlı var. İlk önce transimmünizasyon modalitesi üzerine odaklandık. Son zamanlarda bildirilen minyatür ölçeklenebilir fare-to-man ECP cihaz, transimmünizasyon (TI) odası veya plaka, ve karşılık gelen protokol, bir kanser ayarında insan ECP cihazın hem hücresel ve in vivo etkilerini çoğaltmak11.
Transimmünizasyon içinde vivo modelde mümkün olduğunca klinik olarak alakalı hale getirmek için, subkutan enjekte edilen syngeneik fare tümörü sonra immünoterapi başlatıldı, böylece kurulan kanserde protokolün etkinliğini test. Benzer şekilde CTCL ‘de ECP ‘ye, Yumm 1.7 Melanom modelinde prensip olarak transimmünizasyon protokolü, tümör taşıyan hayvanlardan periferik kan mononükleer hücreler (PBMC) kullanır. Hücreler akış altında TI plakası üzerinden geçirilir. Minyatür odada hücrelerin 8-MOPbir tedavisi mümkün iken, sadece istenilen hücre tipi 8-MOPAmaruz kalmasını sağlamak için, ayrı olarak yürütmek için tercih edilir. Önceki çalışmalar ECP ‘s tolerogenic etkisi 8-MOPa-yaralı antijen sunan hücre12tarafından aracılı olduğunu gösterir, bağışıklık etkisi 8-hedef tümör hücrelerininbir yaralanma MOP gerektirirken11. Transimmünizasyon protokolünde ya tümör hücreleri, ya da immün hücreler, seçmeli olarak 8-MOPA ‘ya ihtiyaç duyulan şekilde maruz kalabilirler. 8-MOPA-yaralanan tümör hücreleri ve ECP kaynaklı dendritik hücreler (DC) arasındaki temas süresini maksimumdan çıkarmak, klinik ECP13‘ ün immünoterapötik kapasitesini önemli ölçüde geliştirecek şekilde gösterilmiştir, biz bir gecede ortak kuluçş protokolüne adım at. Gece kuluçvan sonra, tedavi hücreler tümör taşıyan hayvan döndürülür.
Bu sistem, tümör büyümesini güvenilir bir şekilde azalttı ve kurulan syngeneik tümörlerle fareler içinde spesifik anti-tümör bağışıklık başlattı11, ve bıze ECP ‘nin klinik anti-tümör etkinliğini mekanizmasını incelemek için izin verdi. Birkaç çalışmada, ECP dokunulmazlığının TI plakası14,15‘ te ex vivo trombosit aktivasyonu yoluyla başlatıldığını göstermiştir. Aktif trombositler daha sonra monoksit-dendritik hücre maturasyonu14, fizyolojik DCS üretimine yol açan sinyal. Yeni kurulan monoksit-türetilmiş DCs, antijen spesifik T hücresi yanıtlarını16etkinleştirmek için 8-MOPA-hasarlı tümör hücrelerinden çapraz-mevcut talaşık antijenleri edebiliyoruz. Daha önce12,17, ancak tavsiye olarak, 8-MOPakaynaklı hasar doğmakta olan DCS kendileri karşı hareket veya hatta anti-tümör etkisi11ters olabilir, ECP tolerans için bir mekanik bağlantı sağlayarak.
TI plaka da insan PBMC fizyolojik aktif DCs üretmek için kullanılmıştır. Fare çalışmalarına benzer şekilde, insan TI-türeyen DCs, nesil için trombositlerin varlığında plaka geçişi üzerine bağımlıdır, klinik ECP plakasında üretilen bunlar ile fenotipically özdeş görünür ve verimli bir şekilde işleme ve insan T hücrelerinin aktivasyonu için insan tümörü antijenleri çapraz sunma11,16.
ECP immünoterapi mekanizmasının açığa çıkarılması, bu nedenle hızlı bir şekilde fizyolojik fare ve istenen antijen özgüllüğü insan dendritik hücreler oluşturmak için bir yöntem ortaya çıkardık, bu işlevsel olarak modüle edilebilir. Yenilikçi TI cihazı ve protokolü, ECP araştırma ve tedavi ve kanser immünoterapi alanlarında daha geniş ölçüde potansiyel öneme sahiptir ve fizyolojik, fonksiyonel dendritik hücrelere ilgi ile diğer herhangi bir alanda immünizasyon ya da tolerans modalitesi. Bu yayının, bu tür araştırma alanlarına ilgi duydukları araçlara gerekli araçları sunmasını umuyoruz.
İlk kez yukarıda açıklanan minyatür cihaz ve protokol, fare deneysel sistemlerde ECP mekanizmaları ve küçük insan kanı örneklerinde verimli laboratuar araştırması için izin verir. Bu büyük bir avans; Örneğin, bize ilk kez bir fare modelinde katı tümörlere karşı transimmünizasyon etkinliğini göstermek için izin 11, insan Onkoloji benzer bir uygulama gelecekteki olasılığını açarak.
Transimmünizasyon cihazı ve yöntemi burada açıklanan gelişmeden önce, tam olarak ECP tüm yönlerini araştırmak imkansızdı. Fare modellerinde ise 8-MOPa Aspect terapi bir petri çanak hücreleri tedavi ederek biraz çoğaltılabilir12,20, hiçbir kapasite yöntemi plaka geçiş, hangi gösterilmiştir entegre edildi ECP ‘nin fizyolojik DC aktivasyonu14için kritik öneme sahip dinamik trombosit etkileşimleri sağlar. İnsan çalışmalarında, alternatif olarak, akış bileşeni tam olarak mevcut, ancak 8-MOPA, veya onları korumak için belirli hücresel bileşenleri seçici olarak açığa yeteneği,21,22eksik oldu. Bu ECP mekanizması tam anlayış ve bağışıklık veya tolerans için optimizasyon engelledi. Buna ek olarak, klinik ECP aparatı ile çalışmak için gerekli kan miktarı büyük, bilimsel soruşturma engellemektir. İlk kez burada açıklanan minyatür ECP cihaz ve protokol verimli, tam esnek ve ayarlanabilir laboratuvar ECP modelleme için izin verir. Ayrıca, TI plaka mikroskobik tarafından plaka içinde hücre etkileşimlerini gerçek zamanlı görselleştirme ve izlenmesi için izin verir.
Protokolün hem in vivo hem de ex vivo sistemlerini kullanarak başarısı için, tedavi edilen PBMC ‘nin fonksiyonel DCs ‘de aktive edilebilir monosit içermesi önemlidir. Bu aktivasyon devam etmek için, aynı zamanda PBMC kesir sağlıklı, activatable trombosit bir fizyolojik sayı içerir ve TI plaka geçiş protokolü yakından takip edilmesini sağlamak için gereklidir. Yeni etkinleştirilen DCs ‘i belirli bir reaktivite yönünde yönlendirmek için antijen ile birlikte sağlanmalıdır. Biz anti-kanser bağışıklık için antijen teslim en verimli yöntem bir gecede Co-inkübasyon yeni aktif DCs ile antijen içeren 8-MOPA-maruz tümör hücreleri olduğunu bulduk. Bu tümör antijenleri önceden bilgi gerektirmeden bir immünojenik anti-kanser tepkisi oluşturmak mümkün olmanın ek avantajı vardır, DCS onları seçmek için izin vererek. Ancak, antijen bilindiği durumlarda, Co-inkübasyon antijenler olarak ücretsiz peptidler kullanırken ex vivo sistemlerde bazı başarı vardı. İmmünojenik uygulamalar için, DCS kendilerini 8-MOPA Exposure korunmalıdır. Son olarak, in vivo deneylerde, anti-tümör bağışıklık yeteneğine sahip bir hayvan modeli ile çalışmak önemlidir. Transimmünizasyon aktif, antijen özgü DCs oluşturarak çalışır, hangi doğuştan ve adaptif immün tepkiler başlatmak için vücutta çalışır. Tedavi edilen fare içinde NK, CD4 veya CD8 T hücrelerinin eksikliği etkinliği veya yetersizliği protokolün etkinliğini etkileyecek5,11.
Burada açıklanan protokol, bir fare katı syngeneic tümör modeli için optimize edilmiş bir kanıtı-of-prensip biridir, yine de birçok fırsat ortaya çıkarır. Onkoloji içinde ECP mekanizmaları sadece sadece elucidated ediliyor ve daha fazla anlayış için hala çok yer var. Daha geniş ölçüde, fizyolojik olarak aktif fare ve insan DCs oluşturmak ve seçici antijen özgü bağışıklık doğru yönlendirmek için yeteneği kanser ötesinde birçok potansiyel uygulamalar vardır. Aynı şeyi yapmak için yeteneği, ama bunun yerine antijen özgü tolerans doğru DCs doğrudan, ECP kendini tolerans etkinliği tarafından önerilen, aynı zamanda geniş kapsamlı tıbbi etkileri vardır. Bu yöntemle, fizyoloji DC terapilerine ilgi duyan herkes için araçları sunmayı ve verimli bir araştırma Caddesi açmasını umuyoruz.
The authors have nothing to disclose.
Bu çalışma NıH-DCI Spore Grant 1 P50 CA121974 (R. Edelson, M. Girardi) tarafından desteklenmektedir; NIH Kanser Merkezi Destek Grant 3 P30 CA16359-28S1 (R. Edelson, M. Girardi); Howard Hughes Medical Institute eğitim bursu (A. Vassall); ve NY kardiyak Vakfı (R. Edelson, A. Ventura, A. Vassall, H. Ezaldein). Kısmi destek R01 CA196660-01 tarafından M. Bosenberg için sağlandı.
Yazarlar Dr Robert Tigelaar için onun mentorluk, rehberlik ve deneysel anlayış için minnettar. Biz Fraunhofer ıBMT, özellikle Dr Thorsten Knoll, geliştirmek ve ECP eşdeğer TI odası sağlamak için meslektaşlarımıza teşekkür ederiz. Nicholas Theodosakis, YUMM deneylerinin ilk aşamalarına nazik bir şekilde yardımcı oldu. Gönüllülük kan tedariği konusunda yardım için Yale ECP tedavi merkezi ‘nde gönüllü kan bağışçılarımıza, Inger Christensen ‘e ve profesyonel personeline teşekkür ediyoruz. Dr. Wendell Yarbrough ve Dr Natalia ıssaeva nazik bizimle SCC61 ve SCC61-E6/7 hücre hatları paylaştı. Projede teknik yardım için Dr. Julia Lewis ‘e FACS protokol tavsiyesi için ve Yale FACS Core ‘da E. Menet, G. Tokmoulina, C. Cote ‘a teşekkür ederiz. TI plaka içindeki hücrelerin film görüntüleri Felix Rivera-Molina, doktora, hücre Biyoloji bölümü ve Yale sınema görüntüleme Merkezi, Yale Tıp Fakültesi yardımıyla satın alınmıştır. Film prodüksiyonu Andrew Osborne, kıdemli video yapımcısı, Iletişim ofisi, Yale Tıp Fakültesi tarafından denetlenmektedir.
8-MOP (UVADEX 20ug/mL, 10 mL) | Therakos, Inc | Rx only, NDC No. 64067-0216-01 | Protocol steps 3 and 8 – mouse and human 8-MOP/UVA treatment of cells |
AB serum | Lonza BioWhittaker | 14-498E | Protocol step 8.5 – overnight culture of human PBMC |
ACK red cell lysis buffer | Lonza BioWhittaker | 10-548E | Protocol step 2 – mouse PBMC preparation |
Anesthesia Tabletop V1 system with active scavenging | VetEquip | 901820 | Protocol steps 1 and 7 – mouse sc tumor introduction and TI administration |
Autologous mouse plasma | prepare in lab | n/a | Prepare per protocol step 2.4, use in 7.1 – mouse TI treatment administration |
Autologous mouse serum | prepare in lab | n/a | Prepare per protocol step 5, use in step 6.1 – overnight culture of mouse PBMC |
C57Bl/6J mice | Jackson labs | 0000664 | Protocol steps 1, 2, 5 and 7 – mouse tumor injection, blood/serum collection, and therapy return |
Cheek bleed GoldenRod lancet, 5 um | Medipoint | 9891620 | Protocol step 2 – mouse PBMC preparation |
Clear RPMI | Gibco by LifeTech | 11835-030 | Protocol steps 6 and 8 – overnight culture of mouse/human PBMC |
DMEM/F12 | Gibco by LifeTech | 11330-032 | Protocol steps 1 and 2 – YUMM1.7 cell culture |
EasyGrip Petri Dishes, 35mm | Falcon | 351008 | Protocol steps 5 and 8 – overnight culture of mouse/human PBMC |
Eppendorf 1.5mL conical tubes | DOT scientific | 1700-GMT | Protocol steps 1-8 |
FBS (fetal bovine serum, heat-inactivated) | SAFC Biosciences | 12306C-500mL | Protocol steps 1-4 – YUMM1.7 cell culture, 8-MOP/UVA treatment of cells, TI plate |
Hemavet 950FS hematology counter | Drew Scientific | HV950FS | Protocol step 8.2 – monitoring human platelet numbers |
Heparin 5,000U/mL | McKesson Packaging services | 949512 | Protocol steps 2 and 8 – mouse and human PBMC preparation |
Isoflurane | Abbott Laboratories | 5260-04-05 | Protocol steps 1 and 7 – mouse sc tumor introduction and TI administration |
Lympholyte M lymphocyte isolation medium | Cedarlane Labs | CL5035 | Protocol step 2 – mouse PBMC preparation |
Non-essential amino acids | Gibco by LifeTech | 11140-050 | Protocol steps 1 and 2 – YUMM1.7 cell culture |
PBS (1x DPBS, (-) Ca+2, (-) Mg+2) | Gibco by LifeTech | 14190-144 | Protocol steps 1-7 |
Pen/strep | Gibco by LifeTech | 15140-122 | Protocol steps 1 and 2 – YUMM1.7 cell culture |
Polypropylene 15mL conical tubes | Falcon | 352097 | Protocol steps 1-8 |
Programmable 2-channel syringe pump | New Era Pump Systems Inc | model NE-4000 | Protocol steps 4 and 8 – running the TI plate |
Retro-orbital injection needles, 27G x 1/2 | BD Biosciences | 305109 | Protocol step 7 – mouse TI treatment administration |
Syringes, 10mL (LUER-LokTip) | BD Biosciences | 309604 | Protocol steps 4, 8 – running the TI plate |
Syringes, 1mL (Slip tip) | BD Biosciences | 309659 | Protocol steps 1, 4, 7, 8 |
TI plate and tubing set | Transimmune AG | not commercially available | Please contact Prof. R. Edelson or Transimmune in order to obtain the device on a collaborative basis. |
TI plate running platform | Transimmune AG | not commercially available | Please contact Prof. R. Edelson or Transimmune in order to obtain the device on a collaborative basis. |
Tissue culture flasks, T75 (75 cm2) | Falcon | 353136 | Protocol steps 1, 2, 6 and 8 – mouse and human cell culture |
Tissue culture plates, 12-well | Falcon | 353043 | Protocol steps 3 and 8 – mouse and human 8-MOP/UVA treatment of cells |
Tissue culture scrapers | Falcon | 353085 | Protocol steps 6 and 8 – overnight culture of mouse/human PBMC |
Trypsin-EDTA 0.25% (1x) | Gibco by LifeTech | 25200-056 | Protocol steps 1 and 2 – YUMM1.7 cell culture |
Tumor injection needles, 25G x 5/8 | BD Biosciences | 305122 | Protocol step 1 – mouse subcutaneous tumor introduction |
UVA irradiator | Johnson and Johnson | not commercially available | The apparatus was specifically developed by J&J for Prof. R. Edelson's laboratory. Several machines are available in the laboratory on a collaborative basis; please contact Prof. R. Edelson for use of one. Alternative UVA irradiators are commercially available but have not been tested by us. |
Invitrogen EVOS FL Auto 2 Imaging System | Invitrogen | fluorescence imaging instrument |