Summary

Avaliação da lateralização do hemisfério com registro de potencial de campo local bilateral no córtex motor secundário de camundongos

Published: July 31, 2019
doi:

Summary

Nós apresentamos in vivo a gravação eletrofisiológicos do potencial local do campo (LFP) no córtice de motor secundário bilateral (m2) dos ratos, que podem ser aplicados para avaliar o lateralization do hemisfério. O estudo revelou níveis alterados de sincronização entre o m2 esquerdo e direito em camundongos APP/PS1 comparados aos controles de WT.

Abstract

Este artigo demonstra procedimentos completos e detalhados para o registro bilateral in vivo e a análise do potencial de campo local (LFP) nas áreas corticais de camundongos, que são úteis para avaliar possíveis déficits de lateralidade, bem como para avaliando a conectividade cerebral e o acoplamento de atividades de rede neural em roedores. Os mecanismos patológicos subjacentes à doença de Alzheimer (AD), uma doença neurodegenerativa comum, permanecem em grande parte desconhecidos. A lateralidade alterada do cérebro foi demonstrada em pessoas envelhecendo, mas se a lateralização anormal é um dos primeiros sinais de AD não foi determinada. Para investigar isso, registramos LFPs bilaterais em camundongos modelo AD de 3-5 meses de idade, APP/PS1, juntamente com controles de tipo selvagem (WT) de littermate. Os LFPs do córtex motor secundário esquerdo e direito (m2), especificamente na banda gama, foram mais sincronizados em camundongos APP/PS1 do que nos controles de WT, sugerindo uma assimetria hemisférica declinada de m2 bilaterais neste modelo de mouse AD. Notavelmente, os processos de gravação e análise de dados são flexíveis e fáceis de realizar, e também podem ser aplicados a outras vias cerebrais ao realizar experimentos que se concentram em circuitos neuronais.

Introduction

A doença de Alzheimer (AD) é a forma mais comum de demência1,2. A deposição de proteína beta-amilóide extracelular (proteína β-amiloide, aβ) e emaranhados neurofibrilares intracelulares (NFTS) são as principais características patológicas do anúncio3,4,5, mas os mecanismos subjacentes ao AD a patogénese permanece em grande parte obscura. O córtex cerebral, uma estrutura-chave na cognição e memória, é prejudicado na AD6, e déficits motores como caminhada lenta, dificuldade em navegar pelo ambiente e distúrbios da marcha ocorrem com o avanço da idade7. O depósito de Aβ e os emaranhados neurofibrilary foram observados igualmente no córtice premotor (PMC) e na área motora suplementar (SMA) em pacientes de AD8 e em adultos mais velhos impactados cognitivamente9, indicando a participação de um motor danificado sistema na patogénese do AD.

O cérebro é formado por dois hemisférios cerebrais distintos que se dividem por uma fissura longitudinal. Um cérebro saudável exibe assimetrias estruturais e funcionais10, que é chamado de “lateralização”, permitindo que o cérebro para lidar eficientemente com várias tarefas e atividades. O envelhecimento resulta em deterioração da cognição e locomoção, juntamente com a redução da lateralidade cerebral11,12. As habilidades motoras do hemisfério esquerdo são prontamente aparentes no cérebro saudável13, mas na lateralidade aberrante do cérebro do anúncio ocorre como consequência da falha da dominância do hemisfério esquerdo associada à atrofia cortical esquerda14, 15,16. Conseqüentemente, uma compreensão de uma alteração possível da lateralização do cérebro na patogénese do AD e nos mecanismos subjacentes pode fornecer introspecções novas na patogénese do AD e conduzir à identificação de biomarcadores potenciais para o tratamento.

A medida electrofisiológica é um método sensível e eficaz de avaliar mudanças nas atividades neuronal dos animais. A redução da assimetria hemisférica em idosos (HAROLD)17 tem sido documentada por pesquisa eletrofisiológica com tempo de transferência interhemisférico sincronizado, o que mostra enfraquecimento ou ausência de assimetria hemisférica para apresentação monauralmente estímulos de fala nos idosos18. Utilizando o app/ps1, um dos modelos de mouse de anúncios mais comumente usados19,20,21,22, em combinação com a gravação extracelular bilateral in vivo de lfps no m2 esquerdo e direito, nós avaliaram possíveis déficits de lateralidade na AD. Além disso, com configurações de parâmetros simples, a função interna do software de análise de dados (veja a tabela de materiais) fornece uma maneira mais rápida e mais direta de analisar a sincronização de sinais elétricos do que matematicamente linguagem de programação complexa, que é amigável para iniciantes com eletrofisiologia in vivo .

Protocol

Todos os animais foram emparelhados-alojados em condições padrão (12 h luz/escuro, ambiente de temperatura constante, livre acesso a alimentos e água) de acordo com o ministério chinês de ciência e tecnologia de laboratório animais diretrizes e experimentos foram aprovados pelo Comitê de ética local da Universidade de Guangzhou. Este é um procedimento de não-sobrevivência. Nota: para os dados mostrados nos resultados representativos, o APP/PS1 (B6C3-TG (APPswe, PSEN1dE9) 85Dbo/J) …

Representative Results

Para verificar se a patologia precoce do AD prejudica a capacidade de lateralização do hemisfério, realizamos gravações de LFP extracelulares bilaterais no m2 esquerdo e direito de camundongos APP/PS1 e controles de WT (com idade de 3-5 meses), e analisamos a correlação cruzada destes LFPs direito. Nos camundongos WT, os resultados demonstraram que a correlação média entre os LFPs esquerdo e direito nos atrasos de tempo positivos diferiu significativamente do que nos atrasos de tempo negativos, implicando a exi…

Discussion

Nós relatamos aqui o procedimento para a gravação extracelular in vivo bilateral, junto com analisar a sincronização de sinais da duplo-região LFP, que é flexível e fácil conduzir para estimar o lateralization do hemisfério do cérebro, assim como o conectividade, direcionalidade ou acoplamento entre as atividades neurais de duas áreas cerebrais. Isso pode ser amplamente utilizado para revelar não só as atividades grupo-neuronais, mas também algumas propriedades básicas da eletrofisiologia inter-r…

Declarações

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado por subvenções da Fundação Nacional de ciências naturais da China (31771219, 31871170), a divisão de ciência e tecnologia de Guangdong (2013KJCX0054), e da Fundação de ciência natural da província de Guangdong (2014A030313418, 2014A030313440).

Materials

AC/DC Differential Amplifier A-M Systems Model 3000
Analog Digital converter Cambridge Electronic Design Ltd. Micro1401
Glass borosilicate micropipettes Nanjing spring teaching experimental equipment company 161230 Outer diameter: 1.0mm
Microelectrode puller Narishige PC-10
NaCl Guangzhou Chemical Reagent Factory 7647-14-5
Pin microelectrode holder World Precision Instruments, INC. MEH3SW10
Spike2  Cambridge Electronic Design Ltd.
Stereomicroscope Zeiss 435064-9020-000
Stereotaxic apparatus  RWD Life Science 68045
Urethane Sigma-Aldrich 94300

Referências

  1. Goedert, M., Spillantini, M. G. A century of Alzheimer’s disease. Science. 314 (5800), 777-781 (2006).
  2. Perrin, R. J., Fagan, A. M., Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 461 (7266), 916-922 (2009).
  3. Cummings, B. J., Pike, C. J., Shankle, R., Cotman, C. W. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiology of aging. 17 (6), 921-933 (1996).
  4. Gordon, M. N., et al. Correlation between cognitive deficits and Abeta deposits in transgenic APP+PS1 mice. Neurobiology of aging. 22 (3), 377-385 (2001).
  5. Fitzpatrick, A. W. P., et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 547 (7662), 185-190 (2017).
  6. Shankar, G. M., et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature medicine. 14 (8), 837-842 (2008).
  7. Buchman, A. S., Bennett, D. A. Loss of motor function in preclinical Alzheimer’s disease. Expert review of neurotherapeutics. 11 (5), 665-676 (2011).
  8. Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral cortex. 1 (1), 103-116 (1991).
  9. Giannakopoulos, P., Hof, P. R., Michel, J. P., Guimon, J., Bouras, C. Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain research. Brain research reviews. 25 (2), 217-245 (1997).
  10. Renteria, M. E. Cerebral asymmetry: a quantitative, multifactorial, and plastic brain phenotype. Twin research and human genetics : the official journal of the International Society for Twin Studies. 15 (3), 401-413 (2012).
  11. Derflinger, S., et al. Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized. Journal of Alzheimer’s disease : JAD. 25 (2), 347-357 (2011).
  12. Abdul Manan, H., Yusoff, A. N., Franz, E. A., Sarah Mukari, S. Z. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task. ISRN neurology. 2013, 892072 (2013).
  13. Kim, S. G., et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 261 (5121), 615-617 (1993).
  14. Bartolomeo, P., D’Erme, P., Perri, R., Gainotti, G. Perception and action in hemispatial neglect. Neuropsychologia. 36 (3), 227-237 (1998).
  15. Bartolomeo, P., et al. Right-side neglect in Alzheimer’s disease. Neurology. 51 (4), 1207-1209 (1998).
  16. Thompson, P. M., et al. Tracking Alzheimer’s disease. Annals of the New York Academy of Sciences. 1097, 183-214 (2007).
  17. Cabeza, R., Anderson, N. D., Locantore, J. K., McIntosh, A. R. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage. 17 (3), 1394-1402 (2002).
  18. Bellis, T. J., Nicol, T., Kraus, N. Aging affects hemispheric asymmetry in the neural representation of speech sounds. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 (2), 791-797 (2000).
  19. Jankowsky, J. L., et al. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular engineering. 17 (6), 157-165 (2001).
  20. Venegas, C., et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 552 (7685), 355-361 (2017).
  21. Busche, M. A., et al. Tau impairs neural circuits, dominating amyloid-beta effects, in Alzheimer models in vivo. Nat Neurosci. 22 (1), 57-64 (2019).
  22. Velazquez, R., et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Molecular Psychiatry. , (2019).
  23. Huo, Q., et al. Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice. Cerebral Cortex. 27 (8), 4060-4072 (2017).
  24. Palop, J. J., et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 55 (5), 697-711 (2007).
  25. Ang, G., et al. Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Translational Psychiatry. 8 (1), 154 (2018).
  26. Funk, C. M., Honjoh, S., Rodriguez, A. V., Cirelli, C., Tononi, G. Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep. Current Biology. 26 (3), 396-403 (2016).
  27. Gregoriou, G. G., Gotts, S. J., Zhou, H., Desimone, R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 324 (5931), 1207-1210 (2009).
  28. Zheng, C., Bieri, K. W., Hsiao, Y. T., Colgin, L. L. Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus. Neuron. 89 (2), 398-408 (2016).
  29. Freeman, W. J., Holmes, M. D., West, G. A., Vanhatalo, S. Fine spatiotemporal structure of phase in human intracranial EEG. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 117 (6), 1228-1243 (2006).
  30. Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron. 88 (1), 220-235 (2015).
  31. Cardin, J. A., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 (7247), 663-667 (2009).
  32. Verret, L., et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 149 (3), 708-721 (2012).
  33. Ahlbeck, J., Song, L., Chini, M., Bitzenhofer, S. H., Hanganu-Opatz, I. L. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse. Elife. 7, (2018).
  34. Spellman, T., et al. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature. 522 (7556), 309-314 (2015).
  35. Vandecasteele, M., et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 111 (37), 13535-13540 (2014).
  36. Seidenbecher, T., Laxmi, T. R., Stork, O., Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 301 (5634), 846-850 (2003).
  37. Zitnik, G. A., Curtis, A. L., Wood, S. K., Arner, J., Valentino, R. J. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 41 (5), 1376-1385 (2015).
  38. Rogers, L. J., Zucca, P., Vallortigara, G. Advantages of having a lateralized brain. Proceedings. Biological sciences / The Royal Society. 271, 420-422 (2004).
  39. Vallortigara, G. The evolutionary psychology of left and right: costs and benefits of lateralization. Developmental psychobiology. 48 (6), 418-427 (2006).
  40. MacNeilage, P. F., Rogers, L. J., Vallortigara, G. Origins of the left, right brain. Scientific American. 301 (1), 60-67 (2009).
  41. Habas, P. A., et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral cortex. 22 (1), 13-25 (2012).
  42. Dennis, N. A., Kim, H., Cabeza, R. Effects of aging on true and false memory formation: an fMRI study. Neuropsychologia. 45 (14), 3157-3166 (2007).
  43. Cabeza, R., et al. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral cortex. 14 (4), 364-375 (2004).
  44. Cherbuin, N., Reglade-Meslin, C., Kumar, R., Sachdev, P., Anstey, K. J. Mild Cognitive Disorders are Associated with Different Patterns of Brain asymmetry than Normal Aging: The PATH through Life Study. Frontiers in psychiatry / Frontiers Research Foundation. 1, 11 (2010).
  45. Jankowsky, J. L., et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human molecular genetics. 13 (2), 159-170 (2004).
  46. Radde, R., et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO reports. 7 (9), 940-946 (2006).
  47. Lacor, P. N., et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 (4), 796-807 (2007).
check_url/pt/59310?article_type=t

Play Video

Citar este artigo
Chen, Y., Li, M., Zheng, Y., Yang, L. Evaluation of Hemisphere Lateralization with Bilateral Local Field Potential Recording in Secondary Motor Cortex of Mice. J. Vis. Exp. (149), e59310, doi:10.3791/59310 (2019).

View Video