Summary

Funcionais de ressonância magnética espectroscopia em 7 T no córtex de barril de rato durante a ativação dos whiskers

Published: February 08, 2019
doi:

Summary

Após a verificação pelo sangue-oxigénio-dependente de nível funcional de ressonância magnética (fMRI bold (realce)) que a área correspondente do córtex campo barril somatossensorial (chamada S1BF) corretamente é ativado, o principal objetivo deste estudo é quantificar o teor de lactato flutuações nos cérebros rato ativado por espectroscopia de ressonância magnética de prótons localizados (1H-MRS) em 7 T.

Abstract

Espectroscopia de ressonância magnética nuclear (NMR) oferece a oportunidade de medir metabólito cerebral conteúdo em vivo e de forma não invasiva. Graças a evolução tecnológica ao longo da última década e o aumento da intensidade do campo magnético, é agora possível obter boa resolução espectros na vivo no cérebro de ratos. Neuroenergetics (ou seja, o estudo do metabolismo cerebral) e, especialmente, metabólicas interações entre os diferentes tipos de células têm atraído cada vez mais interesse nos últimos anos. Entre estas interações metabólicas, a existência de um serviço de transporte de lactato entre neurônios e astrócitos ainda é debatida. É, assim, de grande interesse para realizar espectroscopia de ressonância magnética funcional próton (1H-MRS) em um modelo do rato de lactato de monitor e ativação do cérebro. No entanto, o pico de lactato de metila sobrepõe-se picos de ressonância de lipídios e é difícil de quantificar. O protocolo descrito abaixo permite metabólico e lactato flutuações para ser monitorado em uma área do cérebro ativada. Ativação cerebral é obtida pela estimulação dos whiskers e 1H-MRS é executada no córtex ativado barril correspondente, cuja área é detectada usando sangue-oxigénio-dependente de nível ressonância magnética funcional (fMRI bold (realce)). Todas as etapas são descritas: a escolha dos anestésicos, bobinas e sequências, alcançar a estimulação eficiente whisker diretamente no ímã e processamento de dados.

Introduction

O cérebro possui mecanismos intrínsecos que permitem a regulação do seu principal substrato (ou seja, glicose), tanto por sua contribuição e sua utilização, dependendo de variações na atividade cerebral local. Embora a glicose é o substrato principal energia para o cérebro, experimentos realizados nos últimos anos têm mostrado que lactato, que é produzido pelos astrócitos, poderia ser um substrato de energia eficiente para os neurônios. Isto levanta a hipótese de uma nave de lactato entre astrócitos e neurônios1. Conhecido como ANLS, para transporte de lactato neurônio astrocyte2, a teoria é ainda altamente controversa, mas levou a proposta a glicose, ao invés de ir diretamente para os neurônios, podem entrar os astrócitos, onde é metabolizado em lactato, um metabólito que é , em seguida, transferido para os neurônios, que usá-lo como substrato de energia eficiente. Se um serviço de transporte existe na vivo, ele teria várias consequências importantes, tanto para a compreensão das técnicas básicas em funcionais de imagem cerebral (tomografia por emissão de pósitrons [PET]) e para decifrar as alterações metabólicas observadas em patologias do cérebro.

Para estudar o metabolismo cerebral e, particularmente, metabólicas interações entre neurônios e astrócitos, quatro principais técnicas estão disponíveis (não incluindo micro-/ nanosensors): autoradiografia, PET, microscopia confocal fluorescente de dois fotões e MRS. Autoradiografia foi um dos primeiros métodos propostos e fornece imagens da acumulação regional de radioactivo 14C-2-deoxyglucose em fatias do cérebro, enquanto PET rendimentos na vivo imagens de captação regional de radioativo 18 F-deoxyglucose. Ambos têm a desvantagem de usar as moléculas ao produzir imagens de baixa-resolução. Microscopia de dois fotões fornece celular resolução de sondas fluorescentes, mas espalhamento de luz por tecido limita a profundidade de imagem. Estas três técnicas foram usadas anteriormente para estudar neuroenergetics em roedores durante estimulação Suiça3,4,5,de6. Na vivo MRS tem a dupla vantagem de ser não-invasiva e nonradioactive, e qualquer estrutura cerebral pode ser explorada. Além disso, a MRS pode ser executada durante a ativação neuronal, uma técnica chamada MRS funcional (fMRS), que tem sido desenvolvido muito recentemente em roedores7. Portanto, propõe-se um protocolo para monitorar o metabolismo do cérebro durante a atividade cerebral por 1H-MRS na vivo e de forma não invasiva. O procedimento é descrito em ratos adultos saudáveis com ativação cerebral obtida por uma estimulação de whisker ar-sopro executada diretamente em uma imagem de ressonância magnética (RM) T 7, mas pode ser adaptado em animais geneticamente modificados, assim como em qualquer condição patológica .

Protocol

Todos os procedimentos de animais foram conduzidos em conformidade com as diretrizes de Experimentação Animal da Directiva do Conselho das Comunidades Europeias de 24 de novembro de 1986 (86/609/CEE). O protocolo conheceu as diretrizes éticas do Ministério francês de agricultura e florestas e foi aprovado pelas comissões de ética locais (Comitê d ‘éthique pour l” expérimentation Animale Bordeaux n ° 50112090-A). Nota: Durante as medições do senhor, um nível adequado de anestesia…

Representative Results

Este protocolo permite a quantificação das flutuações do metabólito durante a ativação cerebral, que é obtida pela estimulação dos whiskers certo diretamente no imã. Neste estudo, o objetivo geral de fMRI bold (realce) foi verificar que a estimulação dos whiskers era eficiente, para visualizar a área de S1BF registrada e para localizar corretamente o voxel para 1H-fMRS. O dispositivo construído para ati…

Discussion

O córtex de tambor, também chamado S1BF para o córtex somatossensorial ou barril de campo, é uma região dentro da camada cortical IV que pode ser observada usando o citocromo c oxidase coloração9, e sua organização é bem conhecida, uma vez que foi amplamente descrito 10,11. Um vibrissa é conectado a um barril, no qual cerca de 19.000 neurônios organizam-se em uma coluna de12. O caminho do córtex whisker…

Declarações

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pela subvenção LabEx trilha, referência ANR-10-LABX-57 e um franco-suíço ANR-FNS concede referência ANR-15-CE37-0012. Os autores Aurélien Trotier agradecer seu suporte técnico.

Materials

0.5 mL syringe with needle Becton, Dickinson and Company, USA 2020-10 0.33 mm (29 G) x 12.7 mm
1H spectroscopy surface coil Bruker, Ettlingen, Germany T116344
7T Bruker Biospec system Bruker, Ettlingen, Germany 70/20 USR
Arduino Uno based pulsing device custom made
Atipamezole Vétoquinol, S.A., France V8335602 Antisedan, 4.28 mg
Breathing mask custom made
Eye ointment TVM laboratoire, France 40365 Ocry gel 10 g
Induction chamber custom made 30x17x15 cm
Inlet flexible pipe Gardena, Germany 1348-20 4.6-mm diameter, 3m long
Isoflurane pump, Model 100 series vaporizer, classic T3 Surgivet, Harvard Apparatus WWV90TT from OH 43017, U.S.A
Isoflurane, liquid for inhalation Vertflurane, Virbac, France QN01AB06 1000 mg/mL
KD Scientific syringe pump KD sientific, Holliston, USA Legato 110
LCModel software LCModel Inc., Ontario, Canada 6.2
Medetomidine hydrochloride Vétoquinol, S.A., France QN05CM91 Domitor, 1 mg/mL
Micropore roll of adhesive plaster 3M micropore, Minnesota, United States MI912
Micropore roll of adhesive plaster 3M micropore, Minnesota, United States MI925
Monitoring system of physiologic parameter SA Instruments, Inc, Stony Brook, NY, USA Model 1025
NaCl Fresenius Kabi, Germany B05XA03 0.9 % 250 mL
Outlet flexible pipe Gardena, Germany 1348-20 4.6-mm diameter, 4m long
Paravision software Bruker, Ettlingen, Germany 6.0.1
Peripheral intravenous catheter Terumo, Shibuya, Tokyo, Japon SP500930S 22 G x 1", 0.85×25 mm, 35 mL/min
Rat head coil Bruker, Ettlingen, Germany
Sodic heparin, injectable solution Choai, Sanofi, Paris, France B01AB01 5000 IU/mL
Solenoid control valves, plunger valve 2/2 way direct-acting Burkert, Germany 3099939 Model type 6013
Terumo 2 ml syringe Terumo, Shibuya, Tokyo, Japon SY243 with 21 g x 5/8" needle
Terumo 5 mL syringe Terumo, Shibuya, Tokyo, Japon 05SE1
Wistar RJ-Han rats Janvier Laboratories, France

Referências

  1. Pellerin, L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 55, 1251-1262 (2007).
  2. Pellerin, L., Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America. 91, 10625-10629 (1994).
  3. Cholet, N., et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. Journal of Cerebral Blood Flow & Metabolism. 21, 404-412 (2001).
  4. Voutsinos-Porche, B., et al. Glial Glutamate Transporters Mediate a Functional Metabolic Crosstalk between Neurons and Astrocytes in the Mouse Developing Cortex. Neuron. 37, 275-286 (2003).
  5. Zimmer, E. R., et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nature Neuroscience. 20 (3), 393-395 (2017).
  6. Haiss, F., et al. Improved in vivo two-photon imaging after blood replacement by perfluorocarbon. The Journal of Physiology. , (2009).
  7. Mullins, P. G. Towards a theory of functional magnetic resonance spectroscopy (fMRS): A meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scandinvian Journal of Psychology. 59, 91-103 (2018).
  8. Wong-Riley, M. T., Welt, C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proceedings of the National Academy of Sciences of the United States of America. 77, 2333-2337 (1980).
  9. Petersen, C. C. The functional organization of the barrel cortex. Neuron. 56, 339-355 (2007).
  10. Cox, S. B., Woolsey, T. A., Rovainen, C. M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. Journal of Cerebral Blood Flow & Metabolism. 13, 899-913 (1993).
  11. Feldmeyer, D. Excitatory neuronal connectivity in the barrel cortex. Frontiers in Neuroanatomy. 6, 24 (2012).
  12. Boussida, S., Traore, A. S., Durif, F. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study. PLoS One. 12, e0176512 (2017).
  13. Heinke, W., Koelsch, S. The effects of anesthetics on brain activity and cognitive function. Current Opinion in Anesthesiology. 18, 625-631 (2005).
  14. Horn, T., Klein, J. Lactate levels in the brain are elevated upon exposure to volatile anesthetics: a microdialysis study. Neurochemistry International. 57, 940-947 (2010).
  15. Boretius, S., et al. Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo. Neuroimage. 69, 244-255 (2013).
  16. Sinclair, M. D. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Canadian Veterinary Journal. 44, 885-897 (2003).
  17. Weber, R., et al. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage. 29, 1303-1310 (2006).
  18. Hartmann, M. J., Johnson, N. J., Towal, R. B., Assad, C. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. The Journal of Neuroscience. 23, 6510-6519 (2003).
  19. Prichard, J., et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proceedings of the National Academy of Sciences of the United States of America. 88, 5829-5831 (1991).
  20. Sappey-Marinier, D., et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism. 12, 584-592 (1992).
  21. Mazuel, L., et al. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS One. 12, e0174990 (2017).
  22. Castellano, G., et al. NAA and NAAG variation in neuronal activation during visual stimulation. Brazilian Journal of Medical and Biological Research. 45, 1031-1036 (2012).
  23. Sarchielli, P., et al. Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage. 24, 1025-1031 (2005).
  24. Baslow, M. H., Hrabe, J., Guilfoyle, D. N. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. Journal of Molecular Neuroscience. 32, 235-245 (2007).
  25. Mangia, S., Tkac, I. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. Journal of Molecular Neuroscience. 35, 245-248 (2008).
  26. Baslow, M. H., Hrabal, R., Guilfoyle, D. N. Response of the authors to the Letter by Silvia Mangia and Ivan Tkac. Journal of Molecular Neuroscience. 35, 247-248 (2008).
  27. Barros, L. F., Weber, B. CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. The Journal of Physiology. 596, 347-350 (2018).
  28. Bak, L. K., Walls, A. B. CrossTalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. The Journal of Physiology. 596, 351-353 (2018).
check_url/pt/58912?article_type=t

Play Video

Citar este artigo
Blanc, J., Roumes, H., Mazuel, L., Massot, P., Raffard, G., Biran, M., Bouzier-Sore, A. Functional Magnetic Resonance Spectroscopy at 7 T in the Rat Barrel Cortex During Whisker Activation. J. Vis. Exp. (144), e58912, doi:10.3791/58912 (2019).

View Video