This step-by-step protocol provides a detailed description of the experimental setup and data analysis for the assessment of inflammatory responses in hiPSC-ECs and the analysis of leukocyte adhesion under physiological flow.
Endothelial cells (ECs) are essential for the regulation of inflammatory responses by either limiting or facilitating leukocyte recruitment into affected tissues via a well-characterized cascade of pro-adhesive receptors which are upregulated on the leukocyte cell surface upon the inflammatory trigger. Inflammatory responses differ between individuals in the population and the genetic background can contribute to these differences. Human induced pluripotent stem cells (hiPSCs) have been shown to be a reliable source of ECs (hiPSC-ECs), thus representing an unlimited source of cells that capture the genetic identity and any genetic variants or mutations of the donor. hiPSC-ECs can therefore be used for modeling inflammatory responses in donor-specific cells. Inflammatory responses can be modeled by determining leukocyte adhesion to the hiPSC-ECs under physiological flow. This step-by-step protocol provides a detailed description of the experimental setup and data analysis for the assessment of inflammatory responses in hiPSC-ECs and the analysis of leukocyte adhesion under physiological flow.
Inflammation plays a pivotal role in many pathological conditions, including cardiovascular and neurodegenerative disorders, sepsis and adverse drug responses (ADRs). Endothelial cells (ECs) play an essential role in regulating inflammatory responses via the induction of pro-adhesive receptors, such as E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on their surface1,2. Microvascular ECs in different tissues are known to exhibit heterogeneity in inflammatory responses3,4. Furthermore, genetic background or certain genetic conditions might result in the differences in inflammatory responses between individuals; it is therefore important to have access to ECs from different individuals. More recently, human induced pluripotent stem cells (hiPSCs)5, that can be derived from virtually any individual, were shown to serve as a reliable and renewable source of ECs6,7,8,9. Therefore, the assessment of inflammatory responses and leukocyte recruitment in hiPSC-ECs is valuable, not only for modeling of certain genetic disorders, but also to provide indications of inter-individual variability and to use as a tool for personalized medicine in the future.
Flow assays provide a useful tool for studying endothelial-leukocyte interaction. Advances in microfluidic devices enable the reproduction of physiological fluid flow conditions with precise control of vascular bed-specific shear stress levels. Live imaging allows monitoring of the cascade of events of leukocyte capture, rolling, crawling, adhesion and transmigration. Several flow assays to study endothelial-leukocyte interaction have been developed, however, they all utilize primary ECs10,11,12,13. Here, we will describe in detail the assay for the assessment of human leukocyte adhesion to hiPSC-ECs under physiological flow. In this procedure, we describe optimized conditions of hiPSC-EC stimulation with pro-inflammatory stimuli, such as tumor necrosis factor alpha (TNFα), dissociation, seeding into a microfluidic chip with eight parallel channels. We describe a step-by-step protocol for the perfusion of hiPSC-ECs with the suspension of fluorescently labeled leukocytes in microfluidic chips, live cell imaging and automated counting of adherent leukocytes.
This protocol is useful for the assessment of inflammatory responses in hiPSC-ECs in drug screening, disease modeling and personalized regenerative medicine.
1. Preparation of Solutions and Reagents
2. Coating of Microfluidic Chips
3. Preparation of hiPSC-ECs
NOTE: In the protocol described here, hiPSC-ECs were differentiated, purified, cryopreserved and thawed as previously described8.
4. hiPSC-ECs Dissociation and Seeding into Microfluidic Chip
5. Preparation of Human Leukocytes
NOTE: In the protocol described here, a commercially available monocytic cell line (THP-1) was used. Alternatively, peripheral blood mononuclear cells or neutrophils can be used. Isolation of peripheral blood monocytes and neutrophils can be performed using standard procedure11. Perform all steps described in this paragraph in a cell culture hood.
6. Preparation of the Microfluidic Pump
7. Preparation of the Microfluidic Chip for Live Imaging
8. Flow Adhesion Assay and Image Acquisition
9. Completing the Assay and Cleaning the Microfluidic Pump
10. Counting of Adherent Leukocytes
First, the response of hiPSC-ECs to the stimulation with pro-inflammatory agent TNFα should be examined, as previously described7. TNFα treatment for 12 h triggers the upregulation of E-selectin with the peak at 6 h after starting treatment. Additionally, ICAM-1 is upregulated 6 – 12 h post-treatment. Although we did not observe the expected upregulation of VCAM-1, it is typically observed in primary human umbilical vein endothelial cells (HUVECs). We found overnight (12 h) TNFα treatment to be the most convenient for the leukocyte adhesion assay.
Optimal hiPSC-ECs dissociation should result in a single-cell suspension free of cell clumps. Figure 2C illustrates the optimal hiPSC-EC density right after injection. Typically, 15 min after injection, hiPSC-ECs attach to the bottom of the channel and start to spread (Figure 2D). 1 h after injection, hiPSC-ECs form a well-spread monolayer along the channel and will be ready to begin the flow assay (Figure 2E).
Labeling of leukocytes with fluorescent tracer is beneficial for phase contrast images in automated image quantification, as it makes the cell identification step easier, especially because the leukocytes adhere to the monolayer of ECs and it is often difficult for software to distinguish different cell types.
Free open-source image processing software is very useful for automated quantification of adherent leukocytes. The pipeline described in the protocol here is based on primary object identification using adaptive thresholding of fluorescent images of leukocytes (Figure 4A). Filtering of identified objects based on a minimal area additionally filters out falsely identified objects, such as cell debris, autofluorescence or any other non-specific fluorescent signal (Figure 4C, D).
One microfluidic chip with eight parallel channels allows the comparison of two independent groups, for instance, ECs differentiated from independent hiPSCs, such as healthy donors or patients with genetic disorders. Additional controls, such as untreated ECs, or pre-treatment with an ICAM-1 blocking antibody can be included as well10,11. Two to three microfluidic chips can be processed at a time. For the robustness of the conclusions, a minimum of three independent biological experiments performed on independent days is recommended.
Figure 1: Preparation of hiPSC-ECs and leukocytes for the flow assay. (A) Pre-treatment of hiPSC-ECs with the pro-inflammatory stimulus (TNFα). (B) Schematic representation of hiPSC-ECs enzymatic dissociation, centrifugation, and resuspension. (C) Schematic representation of coating of the channels (C, left), injection of the hiPSC-EC suspension (C, middle) and cell culture medium addition after hiPSC-ECs attachment in the microfluidic chip. (D) Schematic representation of the leukocyte washing step, labeling with fluorescent dye DiOC6 and resuspension. Please click here to view a larger version of this figure.
Figure 2: Microfluidic chip with hiPSC-ECs. (A) Microfluidic chip in a 10 cm Petri dish. (B) The humidified chamber used for incubation. (C, D, E) Representative images of hiPSC-ECs in the microfluidic channel 0 min (C), 15 min (D), 1 h (E) after injection. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Figure 3: Experimental setup of the live cell imaging and leukocyte perfusion assay. (A, B) Photo (A) and schematic representation (B) of the experimental setup of the live cell imaging and flow assay: (1) – inverted fluorescent microscope with mounted live imaging chamber (5% CO2, 37 °C, humidified), (2) – microfluidic pump, (3) – 8-channel manifold, (4) – PC for microscope control and image acquisition, (5) – PC for microfluidic pump control. (C) Microfluidic chip with the inserted tubing of the 8-channel manifold fixed in a plate holder and mounted in the motorized stage of the microscope. (D) Schematic representation of the major steps of the flow assay. Please click here to view a larger version of this figure.
Figure 4: Image analysis and automated detection of adherent leukocytes. (A) The dialog window of the image processing software with specified settings for the identification of leukocytes. (B) The dialog window of the image processing software with specified filtering criteria of the identified objects based on minimally accepted surface area (SAmin = 70 px). (C) Example of correct identification of leukocytes and filtering of non-specific objects of the small surface area (SA) (typical diameter in pixel (Min, Max) = (9, 15); Filtering criteria SAmin = 70 px). Accepted objects are depicted in green and discarded objects are depicted in violet. (D) Example of incorrect identification of leukocytes due to the incorrect range of typical diameter (Typical diameter in pixel (Min, Max) = (3, 15); Filtering criteria SAmin = 70 px). Accepted objects are depicted in green and discarded objects are depicted in violet. Please click here to view a larger version of this figure.
This protocol describes the characterization of hiPSC-EC treatment with pro-inflammatory stimuli, such as TNFα, functional assessment of leukocyte adhesion to hiPSC-ECs in the flow assay using live imaging and automated counting of adherent leukocytes.
Overnight stimulation of hiPSC-ECs with TNFα results in the elongated appearance that typically indicates an activated pro-inflammatory phenotype in ECs. During the optimization stage, expression levels of E-selectin, ICAM-1, VCAM-1 should be verified by FACs7,8, and primary human umbilical vein ECs (HUVECs) are advisable to be included as positive controls.
Optimal hiPSC-ECs dissociation and seeding density should be reached to achieve a confluent monolayer without forming cell clumps and channel clogs. It is critical to re-suspend leukocytes right before perfusion in order to avoid cell precipitation and maintain a constant concentration when assaying each channel. Human peripheral blood leukocytes, such as monocytes and neutrophils can be used, or established monocytic cell lines, such as THP-1 or HL-60 could be used as an alternative.
During the assembly of the microfluidic setup and during the flow assay, it is critical to prevent air bubbles from being trapped in the microfluidic tubing and channels as they can result in the detachment of hiPSC-ECs and/or adherent leukocytes. Fluid-to-fluid interface or incorporation of the additional washing steps during the preparation of the microfluidic setup could help to prevent air bubbles.
It is advisable that the protocol is run by two operators where one prepares the cells and the second prepares the microfluidic system and flow assay. This ensures that ECs are plated into microfluidic chips within a constant time-window prior to processing and improves the accuracy and reproducibility of the results. In addition, this also allows setting up blinded experiments to avoid bias in the results.
For successful cell detection with the automated image processing pipeline, it is important to acquire images in focus with a high signal-to-noise ratio and to avoid autofluorescence of non-specific objects, such as cell clumps. Of crucial importance is the correct specification of minimal and maximal limits of the typical size of adherent leukocytes that need to be identified. One can estimate the typical size of leukocytes using a line measurement tool in ImageJ. For instance, in our analysis, we used the range of 9–15 pixels which corresponds to the physical size of 10.3–17.1 µm (Figure 4C). When using a wrong range, e.g., 3–15 pixels (3.4–17.1 µm), a single leukocyte is identified not as one cell, but rather its subparts are identified as separate objects (Figure 4D). This leads to the false number of objects to be identified.
Many objects of a low intensity and smaller surface area than leukocytes may be detected using the provided adaptive thresholding method. This might take place due to autofluorescence or any other non-specific fluorescent signals. Nevertheless, these non-specific objects, if their area is lower than the typical area of a single leukocyte, can be filtered by defining the minimally accepted surface area (Figure 4C).
The flow assay described here allows direct assessment of leukocyte adhesion to an EC monolayer, elucidating the interaction of these two cell types, but does not take into account other cell types, such as pericytes that are present in the vascular wall and might also participate in the regulation of leukocyte extravasation15. Integrating a 3D culture microenvironment with other cell types could improve the physiological relevance of the system. Despite these limitations, the flow assay for the assessment of inflammatory responses described here provides a valuable tool for basic characterization and disease modeling applications of hiPSC-ECs.
The authors have nothing to disclose.
The authors would like to acknowledge the following grants: European Research Council (ERCAdG 323182 STEMCARDIOVASC); Netherlands Organ-on-Chip Initiative, an NWO Gravitation project funded by the Ministry of Education, Culture and Science of the government of the Netherlands (024.003.001).
Vena8 Endothelial+ biochip | Cellix Ltd | V8EP-800-120-02P10 | |
Mirus Evo Nanopump | Cellix Ltd | MIRUS-EVO-PUMP | 1 x syringe pump; 1 x VenaFluxAssay Software; 1 x tubing kit; power supply and cables. |
8-channel manifold MultiFlow8 | Cellix Ltd | MIRUS-MULTIFLOW8 | |
Humidified box | Cellix Ltd | HUMID-BOX | |
Fluorescence imaging system Leica AF6000 | Leica Microsystems | ||
Electron-multiplying charge-coupled device camera | Hamamatsu | C9100 | |
Biological safety cabinet/laminar flow-hood | Cleanair | ||
CO2 cell-culture incubator | Panasonic | MCO-170AICUV | |
Centrifuge | Hitachi | himac-CT6EL | |
Handheld pipetman (P-10 (10 mL), P-200 (200 µL), P-1000 (1,000 µL) | Gilson international | 4807 (10µl), 4810 (200µl), 4809 (1000µl) | |
Sterile plastic pipette | Greiner Bio-One | 606180 (5ml), 607180 (10ml) | |
Petri dish | VWR/ Duran Group | 391-0860 | |
Culture flasks (75 cm2) | CELLSTAR | 658,170 | |
Centrifuge tube (15 mL) | CELLSTAR | 188271 | |
Name | Company | Catalog Number | Comments |
Gelatin from porcine skin, type A | Sigma-Aldrich | G1890 | |
Fibronectin (Bovine plasma) | Sigma-Aldrich | F1141 | |
DPBS, no calcium, no magnesium | Life Technologies | 14190-169 | |
Human Endothelial-SFM | Life Technologies | 11111-044 | |
Human VEGF 165 IS, premium grade | Miltenyi Biotec | 130-109-386 | |
Human FGF-2, premium grade | Miltenyi Biotec | 130-093-842 | |
Platelet-poor Plasma Derived Serum, bovine | Biomedical Technologies | BT-214 | |
Recombinant Human TNF-α | Tebu-bio | 300-01A-A | |
TrypLE Select | Life Technologies | 12563029 | |
DiOC6(3) | Sigma-Aldrich | 318426 | |
RPMI 1640 Medium | Life Technologies | 21875-034 | |
2-Mercaptoethanol (50 mM) | Life Technologies | 31350010 | |
FBS | Life Technologies | 10270-106 | |
L-glutamine | Life Technologies | 25030-024 | |
Penicillin-Streptomycin (5,000 U/mL) | Life Technologies | 15070-063 | |
Distilled water | Life Technologies | 15230-089 | |
Ethanol absolute | Merck | 1.00983.2500 | |
VCAM-1 | R&D systems | FAB5649P | |
E-Selectin | R&D systems | BBA21 | |
ICAM-1 | R&D systems | BBA20 | |
Name | Company | Software version | Comments |
Cellrofiler | CellProfiler | 2.1.1 | |
VenaFluxAssay Software | Cellix Ltd | 2.3.a |