Summary

一步冷常压等离子体体外处理神经干细胞分化

Published: January 11, 2019
doi:

Summary

该方案旨在提供神经干细胞冷大气等离子体处理和免疫荧光检测的详细实验步骤, 以提高分化。

Abstract

随着物理等离子体技术的发展, 冷大气等离子体 (cap) 在去污、癌症治疗、创面愈合、根管治疗方面得到了广泛的研究, 形成了一个新的研究领域–血浆医学。作为电、化学和生物反应物种的混合物, cap 已经证明了它们在体外体内增强神经干细胞分化的能力, 正在成为神经疾病治疗的一种有希望的方法在未来。更令人兴奋的消息是, 使用 cap 可以实现一步, 并安全定向, 分化神经干细胞 (nsc) 的组织运输。本文演示了利用自制 cap 射流装置增强 c17.2-nsc 和原发性大鼠神经干细胞 nsc 分化的详细实验方案, 以及倒置显微镜和荧光显微镜观察细胞命运的实验方案。利用免疫荧光染色技术, 发现 nsc 均比未治疗组表现出加速差异率, ~ 75% 的 nsc 选择性分化为神经元, 主要是成熟的、胆碱能的和运动的。神经元。

Introduction

nsc 定向分化为一定的组织转运谱系被认为是治疗神经退行性疾病和神经创伤性疾病有前途的方法之一。例如, 儿茶酚胺能多巴胺能神经元是帕金森病 (pd) 治疗中特别需要的。然而, 传统的方法, 准备所需的细胞运输有许多缺点, 如化学毒性, 疤痕形成, 或其他, 这在很大程度上阻碍了 nsc 在再生医学2的应用。因此, 寻找一种新颖、安全的 nsc 分化方法是非常必要的。

等离子体是继固体、液体和气体之后的第四种物质状态, 它占整个宇宙物质的95% 以上。等离子体与未结合的正向粒子/负粒子和中性粒子呈电中性, 通常由实验室中的高压放电产生。近二十年来, 随着冷大气压力等离子体技术的发展, 等离子体在生物医学中的应用受到了广泛的关注。通过这项技术, 可以在大气中的大气中产生稳定的低温等离子体, 而不会形成电弧, 它由各种活性物质组成, 如活性氮种 (rns)、活性氧物种 (ros)、紫外线 (uv)辐射、电子、离子和电场3。cap 在微生物失活、癌症治疗、伤口愈合、皮肤病治疗、细胞增殖和细胞分化45、6、7等方面具有独特的优势。在前面的研究中, 我们证明了冷大气等离子体射流可以增强 nsc 在小鼠神经干细胞 c17.2 (c17.2-nsc) 和原代大鼠神经干细胞中的分化, 显示出成为定向靶向的强大工具的巨大潜力。nsc8的分化。虽然目前还没有完全了解 nsc 分化的 cap 增强机制, 但 cap 产生的 no 已被证明是这一过程中的关键因素。在这项工作中, 我们的目的是提供一个详细的实验方案, 使用大气压力螺旋氧等离子体喷射器治疗 nsc 的体外, 细胞的制备和预处理, 形态学观察倒置显微镜,荧光显微镜观察免疫荧光染色。

Protocol

1. 细胞培养和分化前 神经干细胞培养与分化前 准备多 d-赖氨酸涂层盖板。将无菌盖板 (直径为20毫米) 放入12孔板中。将盖板玻璃涂上多 d-赖氨酸, 0.1% wv, 在水中 (材料表), 通过以下步骤在盖板上更好地粘附。注: 必须为每个细胞系和应用确定最佳条件。 在水中无菌地将盖滑层表面涂上多 d-赖氨酸, 0.1% wv。轻轻摇晃, 以确保覆盖表面的均匀涂层。…

Representative Results

在 cap 治疗后, 每天在倒置显微镜下观察细胞形态。图 2 显示了两个细胞系中细胞分化的普通倒置相对比光显微镜图像。与对照组和气体流组相比, 等离子处理组的分化速度加快, 分化率较高。 处理后培养 6 d 的 c17.2-nsc 和原代大鼠 nsc 的免疫荧光结果分别如图 3和<st…

Discussion

c17.2-nsc 是由 snyder 等人开发的一种由新生小鼠小脑颗粒层细胞产生的不朽神经干细胞.c17.2-nsc 可分化为神经元、星形胶质细胞和少突胶质细胞, 广泛应用于神经科学12。在我们之前的研究中, cap 可以增强 c17.2-nsc 向神经元的分化。还使用原发性大鼠 nsc 进行了原理验证研究, 血浆暴露对原发性大鼠 nsc 的影响在质量上与 c17.2 nsc 相似, 神经?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了华中学者计划、华中科技大学自主创新基金 (2018kfyxj071 号) 和中国国家自然科学基金 (31501099 和 51707012) 的支持。

Materials

Coverslip NEST 801008
Poly-D-lysine Beyotime P0128
DMEM medium HyClone SH30022.01B stored at 4 °C
DMEM/F12 medium HyClone SH30023.01B stored at 4 °C
N2 supplement Gibco 17502048 stored at -20 °C and protect from light
B27 supplement Gibco 17504044 stored at -20 °C and protect from light
Fetal bovine serum HyClone SH30084.03 stored at -20 °C, avoid repeated freezing and thawing
Donor Horse serum HyClone SH30074.03 tored at -20 °C, avoid repeated freezing and thawing
Penicillin/Streptomycin HyClone SV30010 stored at 4 °C
Trypsin HyClone 25300054 stored at 4 °C
PBS solution HyClone SH30256.01B stored at 4 °C
4% paraformaldehyde Beyotime P0098 stored at -20 °C
TritonX-100 Sigma T8787
Normal Goat Serum Blocking Solution Vector Laboratories S-1000-20 stored at 4 °C
anti-Nestin Beyotime AF2215 stored at -20 °C, avoid repeated freezing and thawing
anti-β-Tubulin III Sigma Aldrich T2200 stored at -20 °C, avoid repeated freezing and thawing
anti-O4 R&D Systems MAB1326 stored at -20 °C, avoid repeated freezing and thawing
anti-NF200 Sigma stored at -20 °C, avoid repeated freezing and thawing
anti-ChAT Sigma stored at -20 °C, avoid repeated freezing and thawing
anti- LHX3 Sigma stored at -20 °C, avoid repeated freezing and thawing
anti-GABA Sigma stored at -20 °C, avoid repeated freezing and thawing
anti-Serotonin Abcam, Cambridge, MA stored at -20 °C, avoid repeated freezing and thawing
anti-TH Abcam, Cambridge, MA stored at -20 °C, avoid repeated freezing and thawing
Immunol Staining Primary Antibody Dilution Buffer Beyotime P0103 stored at 4 °C
Cy3 Labeled Goat Anti-Rabbit IgG Beyotime A0516 stored at -20 °C and protect from light
Alexa Fluor 488- Labeled Goat Beyotime A0428 stored at -20 °C and protect from light
Anti-Mouse IgG 
12-well plate corning 3512
25 cm2 flask corning 430639
Hoechst 33258 Beyotime C1018 stored at -20 °C and protect from light
Mounting medium Beyotime P0128 stored at -20 °C and protect from light
Light microscope Nanjing Jiangnan Novel Optics Company XD-202
Fluorescence microscopy Nikon 80i
High – voltage Power Amplifier Directed Energy PVX-4110
DC power supply Spellman SL1200
Function Generator Aligent  33521A
Oscilloscope Tektronix DPO3034
High voltage probe Tektronix P6015A

Referências

  1. Temple, S. The development of neural stem cells. Nature. 414 (6859), 112-117 (2001).
  2. Rossi, F., Cattaneo, E. Neural stem cell therapy for neurological diseases: dreams and reality. Nature Reviews Neuroscience. 3 (5), 401-409 (2002).
  3. Graves, D. B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics. 45 (26), 263001 (2012).
  4. Weltmann, K. D., von Woedtke, T. Plasma medicine-current state of research and medical application. Plasma Physics and Controlled Fusion. 59 (1), 014031 (2017).
  5. Lloyd, G., et al. Gas Plasma: Medical Uses and Developments in Wound Care. Plasma Processes and Polymers. 7 (3-4), 194-211 (2010).
  6. Yousfi, M., Merbahi, N., Pathak, A., Eichwald, O. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundamental & Clinical Pharmacology. 28 (2), 123-135 (2014).
  7. Xiong, Z., Roe, J., Grammer, T. C., Graves, D. B. Plasma Treatment of Onychomycosis. Plasma Processes and Polymers. 13 (6), 588-597 (2016).
  8. Xiong, Z., et al. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation. Stem Cell Research. 12 (2), 387-399 (2014).
  9. Xie, Z., Zheng, Q., Guo, X., Yi, C., Wu, Y. Isolation, Culture and Identification of Neural Stem Cells in New-born Rats. Journal of Huazhong University of Science and Technology. [Med Sci]. 23 (2), 75-78 (2003).
  10. Ryder, E. F., Snyder, E. Y., Cepko, C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. Journal of Neurobiology. 21 (2), 356-375 (1990).
  11. Snyder, E. Y., Taylor, R. M., Wolfe, J. H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MRS VII mouse brain. Nature. 374 (6520), 367-370 (1995).
  12. Snyder, E. Y., Yoon, C., Flax, J. D., Macklis, J. D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proceedings of the National Academy of Sciences of the United States of America. 94 (21), 11663-11668 (1997).
  13. Jamur, M. C., Oliver, C. Cell Fixatives for Immunostaining. Methods in Molecular Biology. 588, 55-61 (2010).
  14. Jamur, M. C., Oliver, C. Permeabilization of Cell Membranes. Methods in Molecular Biology. 588, 63-66 (2010).

Play Video

Citar este artigo
Xiong, Z., Zhao, S., Yan, X. Nerve Stem Cell Differentiation by a One-step Cold Atmospheric Plasma Treatment In Vitro. J. Vis. Exp. (143), e58663, doi:10.3791/58663 (2019).

View Video