Bu iletişim kuralı hücre-hücre etkileşimleri, yani proteinler hücre kavşaklar, doğrudan canlı hücreler içinde lokalize arabuluculuk proteinler arasındaki etkileşimler araştırmaya floresans dalgalanma spektroskopisi temelli bir yaklaşım açıklar. Biz aleti kalibrasyon, veri toplama ve analizi, olası yapay doku kaynaklarına düzeltmeler dahil olmak üzere ayrıntılı yönergeler sağlar.
Biyolojik süreçlerin çeşitli genellikle komşu hücreler arasında arayüz etkileşim proteinler tarafından aracılı hücre-hücre arasındaki etkileşimleri içerir. İlgi, sadece birkaç deneyleri özellikle bu tür etkileşimlerde doğrudan canlı hücreler sondalama yeteneğine sahiptirler. Burada, proteinlerin komşu hücreleri, hücre-hücre kişiler yüzeyleri, bağlama ölçmek için bir tahlil mevcut. Bu tahlil iki adımdan oluşur: hücre proteinleri farklı floresan proteinler için erimiş ilgi ifade karıştırma, floresans mikroskobu tarama confocal lazer kullanarak hücre-hücre kişiler dalgalanma spektroskopisi ölçülerde ardından. Biz bu testin bir biyolojik ilgili bağlamda fizibilite hücre-hücre kavşak amiloid habercisi gibi protein 1 (APLP1) etkileşimleri ölçerek göstermek. Detaylı iletişim kuralları (floresan çapraz korelasyon spektroskopisi, çapraz korelasyon numarası ve parlaklık analiz tarama) Floresan tabanlı teknikleri ve gerekli araç Kalibrasyonlar kullanarak veri toplama sağlar. Ayrıca, veri analizi ve nasıl tanımlamak ve photobleaching veya hücre hareketi nedeniyle gibi dış, sahte sinyal çeşitleri düzeltmek kritik adımları tartışmak.
Genel olarak, sunulan tahlil herhangi bir homo veya hücreler aynı veya farklı türleri arasında hücre-hücre kişiler, heterotypic protein-protein etkileşim için geçerlidir ve üzerinde bir ticari confocal lazer mikroskobu tarama uygulanabilir. Birkaç dakika faiz proteinlerin diffusive dynamics soruşturma yeterli olması gerekir sisteminin istikrarı önemli bir gereksinimdir.
Birçok biyolojik süreçlerin hücre-hücre etkileşimleri, Örneğin, hücre-hücre adezyon1,2,3, hücre-hücre füzyon4 ve hücresel tanıma5sitelerinde oluşur. Bu tür olayların çok hücreli organizmalar ve hücre-hücre iletişim, Örneğin, bağışıklık yanıtı sırasında için geliştirme sırasında özellikle önemlidir. Bu işlemler genellikle yüzeyde, Yani, komşu hücreler plazma zarı (PM), lokalize ve tam olarak düzenlenmiş uzay ve zamanın çoğu belirli etkileşimler hücre-hücre iletişim tabi proteinler tarafından aracılık. Birçok durumda, bu etkileşimler doğrudan homo – ya da heterotypic protein-protein trans etkileşimleri, ama da iyonları veya hücre dışı bağlayıcı1hareket ligandlar içerebilir. Temel öneme sahip olsa da, bu belirli protein-protein etkileşimler yaşayan hücrelerin doğal ortamda doğrudan sondalama deneyleri eksikliği vardır. Pek çok yöntem de hücre bozulması (Örneğin, biyokimyasal deneyleri co-immunoprecipitation6gibi), gerektiren fiksasyon (Örneğin, bazı süper çözümleme optik mikroskobu teknikleri ve hücre-hücre elektron mikroskobu rehber7), ya da non-spesifik, Örneğin, toplama / yapışma deneyi8,9. Bu sorunu aşmak için floresans teknikleri floresans rezonans enerji transferi (FRET)10 veya floresan uluslara11temel uygulanmıştır. Ancak, fluorophores arasında yeterince kısa mesafelerde elde etmek için potansiyel olarak trans etkileşimleri ile müdahale belgili tanımlık protein10, hücre dışı tarafındaki floresan etiketleri bu yöntemler gerektirir.
Burada, hücre-hücre kişiler bir alternatif floresans tabanlı tahlil protein-protein etkileşimleri için mevcut. Bu yaklaşım floresans çapraz korelasyon yaklaşımlar (tarama floresans çapraz korelasyon spektroskopisi (sFCCS), çapraz korelasyon numarası ve parlaklık (ccN ve B)) ve protein bir füzyon yapı ifade hücrelerinin karıştırma birleştirir faiz, Örneğin, bir yapışma reseptör. İncelenen reseptörleri iki etkileşen hücrelerde iki hayalice ayrılmış floresan proteinlerin (FPs) ile hücre içi etiketlenir ( Şekil 1A‘ ya bakınız) yan.
İstihdam yöntemleri, floresans mikroskobu tarama confocal lazer odak hacmi ile floresan füzyon proteinlerin diffusive hareket tarafından indüklenen dalgalanmaları istatistiksel analizi temel alır. Daha ayrıntılı olarak, proteinler, hücre-hücre kişiler her iki komşu PMs ilgi ortak difüzyon tahlil sondalar. Proteinler trans etkileşimleri tabi eğer bu trans komplekslerin spektral her iki kanal yayan, her iki yayıcılar ilişkili floresans dalgalanmalar neden floresan proteinler taşıyacak. Öte yandan, hiçbir bağlama ortaya çıkarsa, PMs bakan numara dalgalanmaları proteinlerin bağımsız, hiçbir ilişkili dalgalanmaları neden olacaktır. Satın iki yolla yapılabilir: 1) sFCCS bir çizgi şeklinde tarama hücre-hücre iletişim karşıdan karşıya dayanmaktadır ve etkili iletişim bölgesinde bulunan bir noktada etkileşimleri sondalar. Floresans dalgalanmaları zamansal analizi ile sFCCS dynamics bilgi, Yani, aynı zamanda protein kompleksleri difüzyon katsayıları sağlar; 2) ccN & B hücre-hücre iletişim bölgeler alınan görüntüleri bir dizi pixel-wise bir analizine dayalı. Soruşturma için yeteneği ve harita etkileşimler tüm boyunca bölgede (bir odak düzlemi) başvurun, ama bilgi dinamikleri üzerinde sağlamaz. Her iki yöntem ortalama floresans sinyal zaman biriminde tek akışkanın protein kompleksleri tarafından yayılan ve böylece, protein kompleksleri stoichiometry tahminleri sağlamak Yani, moleküler parlaklık analizi ile kombine edilebilir hücre-hücre kişiler.
Bu makalede sunulan tahlil üzerinde bir ticari confocal lazer mikroskobu tarama gerçekleştirmek numune hazırlama, aleti kalibrasyon, veri toplama ve analizi için detaylı iletişim kuralları sağlar. Deneyler foton sayma veya analog dedektörleri ve bir amacı ile yüksek sayısal diyafram ile donatılmış herhangi bir enstrüman üzerinde gerçekleştirilebilir. Biz daha fazla Protokolü’nün önemli adımlar ele ve neden artefactual sinyal dalgalanmaları, Örneğin, Dedektör gürültü, photobleaching veya hücre hareketi birkaç işlemleri için düzeltme düzenleri sağlar. Aslında yapışık hücreleri arasındaki etkileşimler soruşturma için geliştirilmiş, tahlil için süspansiyon hücreler değiştirilebilir veya modeli membran sistemleri, Örneğin, dev unilamellar veziküller (GUVs) veya dev plazma membran veziküller (GPMVs), izin adapte miktar etkileşimleri farklı lipid ortamlarda veya bir organize sitoiskeleti12,13yokluğunda.
Floresans çapraz korelasyon spektroskopisi tarama floresans spektroskopisi çapraz korelasyon14 değiştirilmiş bir versiyonu ve yavaş diffusive dynamics lipid membranlar15soruşturma için özel olarak tasarlanmıştır. Bir satır tarama satın alma ilgi floresan protein içeren PM dikey dayanmaktadır. İki farklı etiketli protein türlerin etkileşimleri soruşturma için satın alma iki spektral kanalları iki lazer satır ve iki algılama windows için hayalice ayrı fluorophores kullanarak gerçekleştirilir. Başbakanın proteinler yavaş difüzyon dinamikleri nedeniyle (D≤ ~ 1 µm2/s), çapraz konuşma ücretsiz ölçüm15hizalamak için satır uyarma düzeninden alternatif tarafından gerçekleştirilebilir. Analizi ile başlar: 1) bir hizalama algoritması yanal hücre hareketi için düzeltme dayalı block-wise ~ 1000 satır, 2) maksimum floresans sinyalYani, Başbakanın pozisyonda, her blok pozisyonla belirlenmesi ortalama ve 3) değişen üzerinde bir ortak kökenli12,15, ayrı ayrı her kanaldaki tüm blokları. Sonra bir otomatik seçim için PM karşılık gelen piksel, tüm hizalanmış çizgileri (Yani, Merkezi ± 2.5σ) toplamı Gauss uygun bir merkez bölgesi seçerek gerçekleştirilir. Entegrasyon-in her satırdaki sinyal verir her kanaldaki membran floresans saat serisi F(t) (g = yeşil kanal, r = kırmızı channel). Piksel boyutu kadar küçük Örneğin, olmak zorunda Not < 200 nm nokta şeklinde yeniden oluşturmak için işlev yaymak ve PM konumuna karşılık gelen merkezini bulmak. Önemli photobleaching huzurunda floresans saat serisi her kanaldaki olabilir çift Üstel fonksiyon ile örnek alınarak ve aşağıdaki formülü ile düzeltilmiş:16
. (1)
Bu formül etkili genlikleri ve korelasyon analizi F(t)cdüzeltilmeyen F(t)elde edilen parametre tahminleri karşılaştırıldığında, elde edilen difüzyon kez düzeltir unutmamak gerekir. O zaman, otomatik ve çapraz korelasyon fonksiyonları (ACFs / CCFs) Floresan sinyallerini hesaplanır:
, (2).
, (3).
Burada δFben benF(t) – = benF(t) ve ben g, r=.
Bir iki boyutlu difüzyon model sonra tüm korelasyon fonksiyonları (CFs) için düzenlenmiştir:
. (4)
Burada, N gözlem birim ve τd floresan proteinlerin difüzyon zaman her kanal için gösterir. Bu model açıklanan Deneysel ortamda proteinlerin difüzyon PM içinde x-z düzlemde oluşur floresans korelasyon yaygın olarak kullanılan yapılandırma aksine spektroskopisi (FCS) sondalama membranlar üzerinde deneyler dikkate alır confocal cilt17difüzyon XY düzlemde. Bel w0 ve yapısı faktörü S, uzama açıklayan wz z, S odak hacmindeki = wz/w0, hayalice benzer boyalar ve aynı optik ayarları ile gerçekleştirilen bir nokta FCS kalibrasyon ölçüm elde edilir zaten kullanılabilir değerler için difüzyon katsayısı kullanarak Dboya:
, (5).
τd, boya boya moleküllerin üç boyutlu difüzyon veri için bir model uygun elde ölçülen ortalama difüzyon zaman olduğu yerde hesap geçişleri için bir kısmı T tüm N moleküllerin, dikkate alarak bir bir süre sabit durumuyla üçlüsü ττ:
. (6)
Son olarak, difüzyon katsayısını (D), moleküler parlaklık değerlerini (ε) ve göreceli çapraz korelasyon sFCCS veri (rel.cc.) aşağıdaki gibi hesaplanır:
, (7).
, (8).
, (9).
çapraz korelasyon işlevi genliği nerede Gçapraz(0) ve ben-th kanal otokorelasyon işlevinde genliği olduğunu.
Göreli çapraz korelasyon, yani bu tanımı denklem 9, demek yerine max kullanma alır kompleksleri farklı konsantrasyonlarda mevcut iki protein türlerin sayısı sınırlıdır dikkate sayı ne kadar küçükse mevcut bir tür.
Çapraz korelasyon numarası ve parlaklık esas floresan yoğunluğu zamanla örnek sabit bir pozisyonda alınan görüntü yığını her piksel için bir an Analizi genellikle ~ 100-200 itibaren oluşan çerçeve, spektral iki kanal () g = yeşil kanal, r = kırmızı channel). Zamansal anlamına gelen benben ve varyans , moleküler parlaklık εi ve numara nben her piksel ve spektral kanal hesaplanır (ben g, r=)18:
, (10).
. (11)
Verilen denklemler gerçek bir foton sayma dedektörü ideal durumda için geçerli olduğunu unutmamak gerekir. Analog tespit sistemleri, aşağıdaki denklemler19,20uygulanır:
, (12).
. (13)
S algılanan fotonlar ve kaydedilen dijital sayıları arasında dönüştürme faktörünü işte okuma gürültü olduğunu ve ofset dedektörü yoğunluğu Ofset için başvurur. Genellikle, bu miktarlar, yoğunluğu sabit aydınlatma19, Örneğin, yansıtıcı metal bir yüzeye veya kuru boya çözüm için bir fonksiyonu olarak Dedektör farkı ölçme üzerinde dayalı herhangi bir dedektör türünün ayarlanması. Ofset için uyarma ışık olmadan bir örnek sayısı oranı ölçerek belirlenebilir. Bir doğrusal regresyon dedektörü ilişkili varyans yaparak karşı şiddeti (ben) Arsa, S ve belirlenen19olabilir:
. (14)
Son olarak, çapraz korelasyon parlaklık kümedeki her pikseli rasgele hesaplanır ve21 olarak genel olarak tanımlanır
, (15).
nerede çapraz değişkenidir .
Uzun ömürlü dalgalanmaları filtre uygulamak için tüm ccN & B hesaplamalar filtreleme, bağımsız olarak her piksel22için bir yük vagonu takip gerçekleştirilir. Kısaca, ni, εben (ben g, r=) ve Bcc segmentlerinin Örneğin, 8-15 kare sürgülü hesaplanır. Böylece elde edilen değerler sonra son piksel sayısı ve parlaklık değerlerini elde etmek için Ortalama.
Stoichiometry Analizi
Protein kompleksleri stoichiometry hücre-hücre kişiler tahmin etmek için moleküler parlaklık ayrı olarak sFCCS veya ccN & B veri için spektral Her kanaldaki analiz edilebilir. SFCCS içinde her ölçüm için her kanaldaki bir parlaklık değeri elde edilir. CcN & B, hücre-hücre iletişim için karşılık gelen tüm piksellerin parlaklık çubuk grafik elde edilir ve ortalama (veya medyan) değeri temsilcisi Parlaklık ölçüm için kullanılabilir. Aynı analiz üzerinde monomeric bir başvuru yaparak, tüm parlaklık değerlerini doğrudan saptanan protein kompleksleri ortalama oligomeric durumunu elde etmek için normalleştirilmiş. Bu noktada, oligomeric devlet bir küçümseme içinde sonuçlanabilir floresan FPs varlığı için düzeltmek önemlidir. Bu genellikle tek renk sFCS veya numarasını kullanarak bir homo dimerik referans protein23,24 parlaklık ve parlaklık (Y & B) ölçme tarafından gerçekleştirilir.
Burada açıklanan deneysel işlemin protein-protein incelenmesi trans etkileşimleri floresans dalgalanma Spektroskopi teknikleri, yani sFCCS ve ccN & b hücre-hücre kişiler sağlar Bu yöntemler floresans dalgalanmaları iki komşu hücrelerin bir ilgili kişi her birini veya diğer füzyon protein ifade faiz protein(s) için erimiş iki hayalice ayrılmış FPs tarafından yayılan bir istatistiksel analize dahil. Trans kompleksleri varlığı içinde komşu PMs proteinlerin Co difüzyon derecesini…
The authors have nothing to disclose.
Bu eser kısmen Deutsche Forschungsgemeinschaft (DFG) tarafından desteklenen 254850309 verin. Yazarlar Madlen Luckner el yazması eleştirel okuma için teşekkür ederiz.
DMEM growth medium | PAN-Biotech | P04-01548 | |
DPBS w/o: Ca2+ and Mg2+ | PAN-Biotech | P04-36500 | |
DPBS w: Ca2+ and Mg2+ | PAN-Biotech | P04-35500 | |
Trypsin EDTA | PAN-Biotech | P10-023100 | |
TurboFect Transfection Reagent | Thermo Fisher Scientific | R0531 | |
HEK 293T cells | DSMZ | ACC 635 | |
Alexa Fluor 488 NHS Ester | Thermo Fisher Scientific | A20000 | |
Rhodamine B | Sigma-Alderich | 83689-1G | |
Plasmid DNA | Addgene | NA | See reference 12 (Dunsing et. al., MBoC 2017),for a detailed description of all plasmids |
6-well plate | Starlab | CC7672-7506 | |
35-mm glass bottom dishes | CellVis | D35-14-1.5-N | |
Zeiss LSM780 confocal | Carl Zeiss | NA | |
MATLAB software package | MathWorks | 2015b | |
Neubauer cell counting chamber | Marienfeld | 640110 |