Qui presentiamo un protocollo per la decomposizione della varianza nella comprensione della lettura in effetti unici e comuni di lingua e decodifica.
La semplice visualizzazione di lettura è un modello popolare di lettura che sostiene che la lettura è il prodotto di decodifica e lingua, con ogni componente in modo univoco di predizione comprensione della lettura. Anche se i ricercatori hanno sostenuto che se la somma, piuttosto che il prodotto dei componenti è il preannunciatore migliore, nessun ricercatori partizionato la varianza spiegata per esaminare la misura in cui i componenti condividono varianza nel predire la lettura. Per scomporre la varianza, sottraiamo R2 per il sola lingua modello dal modello completo per ottenere l’unico R2 per la decodifica. In secondo luogo, sottraiamo R2 per il modello solo per la decodifica del modello completo per ottenere l’unico R2 per lingua. In terzo luogo, per ottenere la varianza comune spiegato da lingua e decodifica, sottraiamo la somma delle uniche due R2 da R2 per il modello completo. Il metodo è illustrato in un approccio di regressione con dati da studenti nei gradi 1 (n = 372), 6 (n = 309) e 10 (n = 122) utilizzando una misura osservata della lingua (Vocabolario ricettivo), decodifica (lettura di parola temporizzato) e comprensione del testo (test standardizzato). I risultati rivelano una quantità relativamente grande di varianza nella lettura e comprensione ha spiegato in grado 1 dalla varianza comune nella decodifica e lingua. Di grado 10, tuttavia, è l’unico effetto della lingua e l’effetto comune di lingua e di decodifica che ha spiegato la maggior parte della varianza nella comprensione della lettura. I risultati sono discussi nel contesto di una versione estesa della semplice visualizzazione di lettura che considera gli effetti unico e condiviso di lingua e decodifica nella predizione di comprensione della lettura.
La semplice visualizzazione di lettura1 (SVR) continua come un popolare modello di lettura a causa della sua semplicità-lettura (R) è il prodotto di decodifica (D) e la lingua (L)- e perché SVR tende a spiegare, in media, circa il 60% di spiegato varianza nella lettura comprensione2. SVR predice che le correlazioni tra D e R si ridurrà nel tempo e che le correlazioni tra L e R aumenterà nel corso del tempo. Gli studi sostengono generalmente questo pronostico3,4,5. Ci sono disaccordi, tuttavia, circa la forma funzionale di SVR, con modelli additivi (D + L = R) spiegando significativamente più varianza nella lettura e comprensione rispetto ai modelli prodotto (P × L = R)6,7,8e un combinazione di somma e prodotto [R = D + L + (P × L) che spiega la maggior quantità di varianza nella lettura comprensione3,9.
Recentemente il modello SVR ha ampliato di là di regressioni basati su variabili osservate alla modellazione variabile latente utilizzando analisi confermativa fabbrica e modellazione di equazioni strutturali. D è in genere misurata con lettura senza orario o temporizzata di parole reali e/o nonwords e R viene solitamente misurata da un test di lettura standardizzata che include passaggi informativi seguite da domande a scelta multipla e alfabetizzazione. L è in genere misurata dai test di vocabolario espressivo e ricettivo e, soprattutto nelle classi primarie, dalle misure della sintassi espressiva e ricettiva e comprensione orale. Più studi longitudinali segnalano che L è unidimensionale10,11,12,13. Tuttavia, un altro studio longitudinale14 segnala una struttura di due fattori per L in delle classi primarie e una struttura unidimensionale in gradi 4 e 8. Recenti studi cross-sectional segnalano che un modello di bifactor migliore si inserisce i dati e predice R15,16,17,18. Ad esempio, Foorman et al. 16 rispetto unidimensionale, fattore di tre, quattro-fattore e bifactor modelli di SVR nei dati da studenti nei gradi 4-10 e ho trovato che un modello di bifactor meglio si adatta e spiegato 72% al 99% della varianza in R. Un fattore generale L ha spiegato varianza in tutti i sette gradi, lessico e sintassi ha spiegato in modo univoco varianza solo in un grado ogni. Anche se il fattore D moderatamente è stato correlato con L e R in tutti i gradi (0.40-0.60 e 0,47-0,74, rispettivamente), che non era in modo univoco correlato con R in presenza del fattore generale di L.
Anche se latente variabile modellazione ha espanso SVR da mettere in luce la dimensionalità di L e il ruolo unico che L gioca nella predizione R di là delle classi primarie, nessuno studio di SVR tranne uno da Foorman et al. 19 hanno diviso la varianza nella lettura e comprensione in che cosa è dovuto unicamente a D e L e ciò che è condiviso in comune. Si tratta di una grande omissione nella letteratura. Concettualmente ha senso che D e L condividerebbero varianza nel predire la lingua scritta perché riconoscimento parola comporta le competenze linguistiche della fonologia, semantica e discorso presso la frase e testo livelli20. Allo stesso modo, comprensione linguistica deve essere collegato a rappresentazioni ortografiche di fonemi, morfemi, parole, frasi e discorso se testo è quello di essere capiti21. Moltiplicando D di L non produce la conoscenza condivisa da questi componenti. Solo la decomposizione della varianza in ciò che è unico e ciò che è condiviso dal D e L a R predizione rivelerà la conoscenza integrata cruciale per il successo degli interventi educativi.
Uno studio di Foorman et al. 19 che decomposto la varianza di comprensione della lettura in ciò che è unico e ciò che è comune a D e L impiegato una variabile latente approccio di modellazione. Il protocollo riportato di seguito viene illustrata la tecnica con dati da studenti nei gradi 1, 7 e 10 basato su singolo osservato variabili per D (decodifica temporizzata), L (Vocabolario ricettivo) e R (standardizzato prova di comprensione di lettura) per rendere il processo di decomposizione facile da capire. I dati rappresentano un sottoinsieme dei dati da Foorman et al. 19.
Ci sono tre passaggi critici nel protocollo per la decomposizione della varianza in R in varianza unica e comune a causa di L e D. In primo luogo, sottrarre la R2 nel modello L-solo dal modello completo per ottenere l’unico R2 per D. In secondo luogo, sottrarre la R2 per il modello D-solo dal modello completo di ottenere l’unico R2 per terzo L., di ottenere la varianza comune spiegata da L e D, sottrarre la somma delle uniche due R2 da R2 per il modello co…
The authors have nothing to disclose.
La ricerca ha segnalata qui è stata sostenuta dall’Istituto di Scienze dell’educazione, US Department of Education, attraverso un subaward alla Florida State University da Grant R305F100005 per l’Educational Testing Service come parte della lettura per la comprensione Iniziativa. Le opinioni espresse sono quelle degli autori e non rappresentano opinioni dell’Istituto, l’US Department of Education, l’Educational Testing Service o Florida State University.