Summary

基于折纸式自折叠的三维石墨烯正多面体的制备

Published: September 23, 2018
doi:

Summary

在这里, 我们提出了一个协议, 以制造3D 石墨烯为基础的正多面体通过折纸般的自折叠。

Abstract

将二维 (2D) 石墨烯组装成三维 (3D) 多面体结构, 同时保持石墨烯的优良固有特性, 对新型器件应用的发展有着极大的兴趣。在这里, 制作 3D, 微型, 空心正多面体 (立方体) 由几层2D 石墨烯或石墨烯氧化物片通过折纸样的自折叠过程描述。这种方法包括使用聚合物框架和铰链, 和铝氧化物/铬保护层, 以减少拉伸, 空间和表面张力应力的石墨烯基膜时, 2D 网转化为3D 立方体。该过程提供了对结构的大小和形状以及并行生产的控制。此外, 这种方法允许在3D 立方体的每个表面上通过金属图案来创建曲面修改。拉曼光谱研究表明, 该方法能保持石墨烯基膜的固有性质, 证明了本方法的鲁棒性。

Introduction

二维 (2D) 石墨烯片具有非凡的光学、电子和机械性能, 使它们成为新一代电子、光电、电化学、机电和生物医学应用1,2,3,4,5,6。除石墨烯生产的2D 层状结构外, 最近还对各种改性方法进行了研究, 以观察石墨烯的新功能, 寻求新的应用机会。例如, 通过将2D 结构的形状或图案裁剪为一维 (1D) 或零维 (0D) 结构 (如石墨烯), 调制 (或调谐) 其物理特性 (掺杂水平和/或带隙)nanoribbon 或石墨烯量子点) 已经研究, 以获得新的物理现象, 包括量子约束效应, 局部等离子模式, 局部电子分布, 和自旋极化边缘状态7,8 ,9,10,11,12。此外, 通过皱 (通常称为 kirigami)、分层、屈曲、扭曲或堆叠多层, 或者通过将2D 石墨烯转移到3D 特征 (基底) 上, 改变石墨烯表面形状, 使2D 石墨烯的质地变显示, 以改变石墨烯的润湿性, 机械特性, 和光学性能13,14

除了改变2D 石墨烯的表面形貌和层状结构外, 2D 石墨烯组装成功能性的、定义良好的三维 (3D) 正多面体最近在石墨烯群落中得到了极大的关注, 以获得新的物理和化学现象15。理论上, 2D 石墨烯基结构的弹性、静电和范德华能量可以用来将2D 石墨烯转化成各种3D 石墨烯-折纸构型16,17。基于这个概念, 理论建模研究已经研究了3D 石墨烯结构设计, 由纳米级的2D 石墨烯膜组成, 在药物传递和一般分子存储16,17的可能用途。然而, 这种方法的实验进展还远未实现这些应用。另一方面,通过模板辅助组装、流定向组装、发酵组装和保形生长方法1819 , 开发了多种化学合成方法, 实现了3D 结构。,20,21,22. 然而, 这些方法目前是有限的, 因为它们不能产生一个 3D, 空心, 封闭结构, 而不会失去石墨烯片的固有性质。

本文概述了用折纸式自折叠法建立3D、中空、石墨烯基 microcubes (200 µm 的整体尺寸) 的策略;克服了建造自由站立, 空心, 3D, 多面体, 石墨烯基材料的首要挑战。在折纸般的, 免提的自折叠技术, 2D lithographically 花纹平面特征 (即,石墨烯基膜) 是连接的铰链 (热敏聚合物, 光刻胶) 在不同的关节, 从而当铰链加热到熔化温度23242526时, 形成2D 网, 折叠起来。以石墨烯为基础的立方体是用由几层化学气相沉积 (CVD) 生长的石墨烯或石墨烯氧化物 (去) 膜组成的窗膜组件实现的;两者都使用高分子框架和铰链。3D 石墨烯基立方体的制备包括: (i) 保护层的制备, (ii) 石墨烯-膜的转移和模式, (iii) 石墨烯膜上的金属表面图案, (iv) 框架和铰链的图案和沉积, (v)自折叠和 (vi) 删除保护层 (图 1)。本文主要研究了3D 石墨烯基立方体的自折叠问题。关于3D 石墨烯基立方体的物理和光学特性的详细信息, 可以在我们最近的出版物27,28中找到。

Protocol

注意: 这些合成中使用的几种化学物质是有毒的, 在接触或吸入时可能会引起刺激性和严重的器官损伤。在处理化学品时, 请使用适当的安全设备和佩戴个人防护设备。 1. 在铜牺牲层上制备氧化铝和铬保护层 使用电子束蒸发器, 在硅 (Si) 基板上沉积 10 nm 厚铬 (Cr) 和 300 nm 厚铜层 (牺牲层) (图 2a)。 自旋涂层光刻胶 (PR)-1 在2500转每分钟然后烘?…

Representative Results

图 2显示了2D 石墨烯和转网结构和随后的自折叠过程的光刻过程的光学图像。通过高分辨率显微镜实时监测自折叠过程。两种类型的3D 石墨烯基立方体折叠在80摄氏度。图 3列出了视频捕获序列, 显示了以并行方式自动折叠3D 石墨烯为基础的立方体。在一个优化的过程中, 这种方法显示出的最高收益率为90%。 <p class="jove_c…

Discussion

对于用 CVD 石墨烯制备的立方体, 因为给定立方体的每一面都是用一个外层框架设计的, 围绕着 160 x 160 µm2区域的游离石墨烯, 单层石墨烯没有必要的强度来允许多维数据集的并行处理。因此, 石墨烯膜由三层 CVD 石墨烯单层板组成,通过三单独的石墨烯转移, 使用多个 PMMA 涂层/去除步骤生产。另一方面, 对于去膜准备, 我们使用单独的去片在水中, 获得通过改装悍马的方法<sup class…

Declarações

The authors have nothing to disclose.

Acknowledgements

这一材料的基础是在明尼苏达大学、双城市和 NSF 职业奖 (CMMI-1454293) 的开办基金的支持下开展的工作。这项工作的一部分是在明尼苏达大学的特征设施中进行的, 这是由 NSF 资助的材料研究设施网络 (通过MRSEC 计划) 的成员。这项工作的一部分是在明尼苏达纳米中心进行的, 这是由国家科学基金会通过国家纳米协调基础设施网络 (NNCI) 的奖励号 ECCS-1542202 支持。c.d. 承认3M 科技奖学金的支持。

Materials

Acetone Fisher Chemical A18P-4 N/A
Aluminium oxide Kurt J. Lesker Company EVMALO-1-2.5 99.99% Pure
APS Copper Etchant 100 Transene Company, Inc. N/A N/A
Camera (for 3D image) Nikon D5100 1080p Full HD, Effective pixels: 16.2 million, Sensorsize: 23.6 mm x 15.6 mm
CE-5 M Chromium Mask Etchant Transene Company, Inc. N/A N/A
Chemical deposition growth (CVD) system Customized N/A Lindberg/Blue Tube Furnace
Chromium Kurt J. Lesker Company EVMCR35J 99.95% pure
Chromium Etchant 473 Transene Company, Inc. N/A N/A
Copper Kurt J. Lesker Company EVMCU40QXQJ 99.99% pure
Developer-1 (MF319 developer) Microposit 10018042 N/A
Developer-2 (AZ developer) Merck performance Materials Corp. 1005422496 N/A
Developer-3 (SU-8 developer) MicroChem NC9901158 N/A
Digital Hot Plate Thermo Scientific HP131725 Super-Nuvoa series, maximum temperature: 370 °C
E-Beam Evaporator System Rocky Mountain Vacuum Tech. N/A RME-2000
Graphene oxide Goographene N/A Purity: ~ 99%; Single layer ratio: ~99%;  0.7-1.2 nm in thickness.
Isopropyl Alcohol Fisher Chemical A416-4 N/A
Mask Aligner Midas MDA-400LJ N/A
Microscope Omax NJF-120A N/A
multiple polymethyl methacrylate (PMMA) MicroChem 950 PMMA A9 N/A
Oxygen plasma  Technics Inc. SERIES 800 Microscale reactive ion etching (RIE)
Photoresist-1 (S1813 Photoresist) Microposit 10018348 N/A
Photoresist-2 (SPR220 Photoresist) MicroChem SPR00220-7G N/A
Photoresist-3 (SU-8 Photoresist) MicroChem SU-8-2010 N/A
Profilometer Tencor Instruments N/A Alpha-Step 200
Raman WITec Instruments Corp. Alpha300R Confocal Raman Microscope
Silicon Wafer Siltronic AG N/A 100mm diameter, N-type, one-side polish, resitivity: 560-840 Ω•cm
Spinner Best Tools S0114031123 SMART COATER 100
Titanium Kurt J. Lesker Company EVMTI45QXQA 99.99% Pure
Ultrasonic Cleaner Crest Ultrasonics N/A Powersonic series

Referências

  1. Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Materials. 6 (3), 183-191 (2007).
  2. Singh, V., et al. Graphene based materials: Past, present and future. Progress in Materials Science. 56 (8), 1178-1271 (2011).
  3. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photonics. 4 (9), 611-622 (2010).
  4. Wang, C., Li, D., Too, C. O., Wallace, G. G. Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials. 21 (13), 2604-2606 (2009).
  5. Bunch, J. S., et al. Electromechanical resonators from graphene sheets. Science. 315 (5811), 490-493 (2007).
  6. Menaa, F., Abdelghani, A., Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Journal of Tissue Engineering and Regenerative. 9 (12), 1321-1338 (2015).
  7. Han, M. Y., Özyilmaz, B., Zhang, Y., Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters. 98 (20), 206805 (2007).
  8. Son, Y. W., Cohen, M. L., Louie, S. G. Half-metallic graphene nanoribbons. Nature. 444 (7117), 347-349 (2006).
  9. Yan, Q., et al. Intrinsic current− voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Letters. 7 (6), 1469-1473 (2007).
  10. Fei, Z., et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 487 (7405), 82-85 (2012).
  11. Joung, D., Zhai, L., Khondaker, S. I. Coulomb blockade and hopping conduction in graphene quantum dots array. Physical Review. B. 83 (11), 115323 (2011).
  12. Bacon, M., Bradley, S. J., Nann, T. Graphene quantum dots. Particle & Particle Systems Characterization. 31 (4), 415-428 (2014).
  13. Blees, M. K., et al. Graphene kirigami. Nature. 524 (7564), 204-207 (2015).
  14. Michael Cai, W., et al. Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Materials. 4 (2), 022002 (2017).
  15. Shenoy, V. B., Gracias, D. H. Self-folding thin-film materials: From nanopolyhedra to graphene origami. MRS Bulletin. 37 (9), 847-854 (2012).
  16. Zhu, S., Li, T. Hydrogenation-Assisted Graphene Origami and Its Application in Programmable Molecular Mass Uptake, Storage, and Release. ACS Nano. 8 (3), 2864-2872 (2014).
  17. Zhang, L., Zeng, X., Wang, X. Programmable hydrogenation of graphene for novel nanocages. Scientific Reports. 3, 3162 (2013).
  18. Vickery, J. L., Patil, A. J., Mann, S. Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures. Advanced Materials. 21 (21), 2180-2184 (2009).
  19. Yang, X., Zhu, J., Qiu, L., Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Advanced Materials. 23 (25), 2833-2838 (2011).
  20. Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 6 (5), 4020-4028 (2012).
  21. Niu, Z., Chen, J., Hng, H. H., Ma, J., Chen, X. A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials. 24 (30), 4144-4150 (2012).
  22. Li, Y., et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy. 1 (2), (2016).
  23. Cho, J. H., Gracias, D. H. Self-Assembly of Lithographically Patterned Nanoparticles. Nano Letters. 9 (12), 4049-4052 (2009).
  24. Cho, J. H., Azam, A., Gracias, D. H. Three Dimensional Nanofabrication Using Surface Forces. Langmuir. 26 (21), 16534-16539 (2010).
  25. Dai, C., Cho, J. H. In Situ Monitored Self-Assembly of Three-Dimensional Polyhedral Nanostructures. Nano Letters. 16 (6), 3655-3660 (2016).
  26. Joung, D., et al. Self-Assembled Multifunctional 3D Microdevices. Advanced Electronic Materials. 2 (6), 1500459 (2016).
  27. Joung, D., Gu, T., Cho, J. H. Tunable Optical Transparency in Self-Assembled Three-Dimensional Polyhedral Graphene Oxide. ACS Nano. 10 (10), 9586-9594 (2016).
  28. Joung, D., et al. Self-Assembled Three-Dimensional Graphene-Based Polyhedrons Inducing Volumetric Light Confinement. Nano Letters. 17 (3), 1987-1994 (2017).
  29. Lian, K., Ling, Z. G., Liu, C. Thermal stability of SU-8 fabricated microstructures as a function of photo initiator and exposure doses. Proceedings of SPIE. 4980, 209 (2003).
  30. Winterstein, T., et al. SU-8 electrothermal actuators: Optimization of fabrication and excitation for long-term use. Micromachines. 5 (4), 1310-1322 (2014).
  31. Syms, R. R. A., Yeatman, E. M., Bright, V. M., Whitesides, G. M. Surface tension-powered self-assembly of microstructures – the state-of-the-art. Journal of Microelectromechanical Systems. 12 (4), 387-417 (2003).
  32. Xie, X., et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Letters. 9 (7), 2565-2570 (2009).
  33. Ferrari, A. C., Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology. 8 (4), 235-246 (2013).
  34. Childres, I., Jauregui, L. A., Park, W., Cao, H., Chen, Y. P., Jang, J. I. Raman spectroscopy of graphene and related materials. New developments in photon and materials research. , (2013).
  35. Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W., Hart, A. J. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Scientific Reports. , 5 (2015).
  36. Wu, T., Shen, H., Sun, L., You, J., Yue, Z. Three step fabrication of graphene at low temperature by remote plasma enhanced chemical vapor deposition. RSC Advances. 3 (24), 9544-9549 (2013).
  37. Liu, C., Schauff, J., Joung, D., Cho, J. H. Remotely controlled microscale 3D self-assembly using microwave energy. Advanced Materials Technologies. 2 (8), 1700035 (2017).

Play Video

Citar este artigo
Joung, D., Wratkowski, D., Dai, C., Lee, S., Cho, J. Fabrication of Three-Dimensional Graphene-Based Polyhedrons via Origami-Like Self-Folding. J. Vis. Exp. (139), e58500, doi:10.3791/58500 (2018).

View Video