Aquí presentamos un protocolo para determinar automáticamente el funcionamiento locomotor de Drosophila en cambios de temperatura con un campo de control de temperatura programable que produce cambios de temperatura rápida y precisa en tiempo y espacio.
Temperatura es un factor ambiental omnipresente que afecta cómo especies se distribuyen y se comportan. Diferentes especies de moscas de la fruta Drosophila tienen respuestas concretas a los cambios de temperaturas en función de su tolerancia fisiológica y capacidad de adaptación. Moscas Drosophila también poseen una sistema que se ha convertido en fundamental para comprender la base neural de la temperatura de procesamiento en ectotermos de detección de temperatura. Presentamos aquí un campo de temperatura controlada que permite cambios de temperatura rápida y precisa con control temporal y espacial para explorar la respuesta de moscas individuales a cambios de temperatura. Individuales moscas se colocan en la arena y expuestas a temperatura pre programada de desafíos, tales como uniforme aumentos graduales de temperatura para determinar las normas de reacción o temperatura espacialmente distribuido al mismo tiempo para determinar preferencias. Individuos son rastreados automáticamente, permitiendo la cuantificación de la velocidad o ubicación de preferencia. Este método puede utilizarse para cuantificar rápidamente la respuesta sobre una amplia gama de temperaturas para determinar las curvas de rendimiento de la temperatura en Drosophila u otros insectos de tamaño similar. Además, puede utilizarse para estudios genéticos para cuantificar preferencias de temperatura y reacciones de mutantes o moscas de tipo salvaje. Este método puede ayudar a descubrir la base de la térmica especiación y adaptación, así como los mecanismos de los nervios detrás de proceso de temperatura.
Temperatura es un factor ambiental constante que afecta a cómo funcionan y comportan1organismos. Las diferencias en latitud y altitud conducen a diferencias en el tipo de organismo están expuestos, que resulta en la selección evolutiva de sus respuestas a2,de temperatura3climas. Los organismos responden a diferentes temperaturas, a través de adaptaciones morfológicas, fisiológicas y conductuales que maximizan el rendimiento de sus entornos particulares4. Por ejemplo, en la mosca de la fruta Drosophila melanogaster, poblaciones de diferentes regiones tienen preferencias de temperatura diferentes, tamaños de cuerpo, tiempos de desarrollo, longevidad, fecundidad y rendimiento a pie a diferentes temperaturas2 ,5,6,7. La diversidad observada entre moscas de diferentes orígenes se explica en parte por la variación genética y expresión de gene de plástico8,9. Asimismo, especies de Drosophila de diferentes áreas distribuyen diferentemente entre gradientes de la temperatura y muestran diferencias en la resistencia al calor extremo y frío pruebas10,11,12.
Drosophila se ha convertido recientemente en el modelo de elección para entender las bases genéticas y de los nerviosas de temperatura percepción13,14,15,16,17. En términos generales, moscas adultas perciben temperatura mediante sensores de temperatura periférica frío y caliente en las antenas y sensores de temperatura en el cerebro13,14,15,16 , 17 , 18 , 19 , 20. los receptores de la periferia para temperaturas expresan Gr28b.d16 o pirexia21, mientras que la periferia receptores fríos se caracterizan por Brivido14. En el cerebro, temperatura es procesada por neuronas expresan TrpA115. Estudios de comportamiento en mutantes de estas vías están mejorando nuestra comprensión de cómo se procesa la temperatura y dan penetraciones en los mecanismos que varían entre las poblaciones de Drosophila de diferentes regiones.
Aquí describimos una arena con control de temperatura que produce cambios de temperatura rápida y precisa. Los investigadores pueden programar previamente estos cambios, que permite manipulaciones estandarizada y repetible de la temperatura sin intervención humana. Moscas se registran y se realiza un seguimiento con software especializado para determinar su posición y la velocidad en diferentes fases de un experimento. La principal medición presentada en este protocolo es la poca velocidad a diferentes temperaturas, ya que es un índice ecológico relevante de rendimiento fisiológico que puede identificar adaptabilidad térmica individual5. Junto con mutantes del receptor de temperatura, esta técnica puede ayudar a revelar los mecanismos de adaptación térmica a nivel celular y bioquímico.
Aquí hemos presentado una automatizado con control de temperatura arena (figura 1) que produce cambios de la temperatura exacto en tiempo y espacio. Este método permite la exposición del individuo de la Drosophila no sólo pre-programados aumenta gradual de la temperatura (figura 2 y figura 3), sino a los retos de la temperatura dinámica en el cual se calentó cada baldosa de la arena mosca forma independiente a una tem…
The authors have nothing to disclose.
Este trabajo fue financiado en parte por una beca del comportamiento y del programa de Neurociencia cognitiva de la Universidad de Groningen y una beca de postgrado de la Consejo Nacional de Ciencia y Tecnología (CONACyT) de México, otorgado a Andrea Soto Padilla y una beca de la John Templeton Foundation para el estudio del tiempo otorgado a Hedderik van Rijn y Jean-Christophe Billeter. Agradecemos también a Peter Gerrit Bosma por su participación en el desarrollo del FlySteps tracker.
Secuencias de comandos TemperaturePhases, FlySteps y FlyStepAnalysis pueden encontrarse información complementaria como en el siguiente enlace temporal y disposición:
https://dataverse.nl/privateurl.XHTML?token=c70159ad-4d92-443d-8946-974140d2cb78
Arduino Due | Arduino | A000062 | Software RUG |
Electronics Board | Ruijsink Dynamic Engineering | FF-Main-02-2014 | |
Power supply Boost | XP-Power 48. V 65 W | ECS65US48 | Set to 53 Volt |
Power supply Tile Heating | XP-Power 15. V 80 W | VFT80US15 | |
Power supply Cooling | XP-Power 15. V 130 W | ECS130U515 | |
Peltier elements | Marlow Industries | RC12-4 | 2 Elements, controlled DC feed |
Heat sink | Fisher Technik | LA 9/150-230V | Decoupled for vibration |
Temperature sensors | Measurement Specialties | MCD_10K3MCD1 | Micro Thermistor Probe |
Copper block/tiles | Ruijsink Dynamic Engineering | FF-CB-01-2014 | |
Auminum ring | Ruijsink Dynamic Engineering | FF-RoF-02-2015 | |
Tesa 4104 white tape 25 x 66 mm | RS Components | 111-2300 | White conductive tape |
Red LEDs | Lucky Ligt | ll-583vc2c-v1-4da | Wavelength between 625 nm, 20 mAmp and 6 V |
Warm white LED strip | Ledstripkoning | HQ-3528-SMD | 60 LEDs per meter |
Switch Power Supply | Generic | T-36-12 | |
Logitech c920 | Logitech Europe S.A | PN960-001055 | |
QuickTime Player | Apple Computer | Recording program | |
Tracking analysis software | R | Packages: pacman | |
Tracking analysis software | MATLAB | ||
Thermal Imaging | FLIR T400sc | ||
Graphs and Statisticts Software | Graph Pad Prism | ||
Sigmacote | Sigma-Aldrich | SL2-100ML | Siliconising agent |
Fly rearing bottles | Flystuff | 32-130 | 6oz Drosophila stock bottle |
Flypad | Flystuff | 59-114 | |
Fly rearing vials | Dominique Dutscher | 789008 | Drosophila tubes narrow 25×95 mm |
Incubator | Sanyo | MIR-154 | |
Magnetic hot plate | Heidolph | 505-20000-00 | MR Hei-Standard |
Agar | Caldic Ingredients B.V. | 010001.26.0 | |
Glucose | Gezond&wel | 1019155 | Dextrose/Druivensuiker |
Sucrose | Van Gilse | Granulated sugar | |
Cornmeal | Flystuff | 62-100 | |
Wheat germ | Gezond&wel | 1017683 | |
Soy flour | Flystuff | 62-115 | |
Molasses | Flystuff | 62-117 | |
Active dry yeast | Red Star | ||
Tegosept | Flystuff | 20-258 | 100% |