Summary

Oförutsägbara kronisk Mild Stress protokollet för att inducera likgiltighet hos möss

Published: October 24, 2018
doi:

Summary

Här presenterar vi protokollet oförutsägbara kronisk mild stress hos möss. Detta protokoll inducerar en långsiktig depressiva-liknande fenotyp och gör det möjligt för att bedöma effekten av förmodad antidepressiva för att vända de beteendemässiga och neuromolecular depressiv-liknande underskotten.

Abstract

Depression är ett mycket utbrett och försvagande tillstånd, bara delvis upp av nuvarande läkemedelsbehandlingar. Bristen på svar på behandling av många patienter uppmanas behovet av att utveckla nya terapeutiska alternativ och att bättre förstå etiologin av sjukdomen. Prekliniska modeller med translationell meriter är rudimentär för denna uppgift. Här presenterar vi ett protokoll för metoden oförutsägbara kronisk mild stress (UCMS) hos möss. I detta protokoll utsätts kroniskt unga möss utbyta oförutsägbara milda stressfaktorer. Stress exponering under den känsliga möss tonåren påminner om patogenesen vid depression hos människor, och anstiftar en depressiv-liknande fenotyp tydligt i vuxen ålder. UCMS kan användas för siktning av antidepressiva medel på olika depressiva-liknande beteenden och neuromolecular index. Bland de mer framstående testerna för att bedöma är depression-liknande beteende hos gnagare sackaros preferens testet (SPT), vilket återspeglar likgiltighet (core symptom på depression). SPT kommer också att presenteras i detta protokoll. Förmågan hos UCMS att inducera likgiltighet, anstiftar långsiktiga beteendemässiga underskott och aktivera återföring av dessa underskott via kronisk (men inte akut) behandling med antidepressiva läkemedel stärker protokollets giltighet jämfört med andra animaliska protokoll för framkalla depressiva-liknande beteenden.

Introduction

Egentlig depression (MDD) är ett handikappande tillstånd, som har angivits som 11: e orsaken till globala bördan från sjukdom1, med en livstidsprevalens för 11 – 16%2,3. MDD har förknippats med allvarliga funktionsnedsättningar på patienternas sociala och yrkesmässiga funktion, minskad livskvalitet, många psykiska och fysiska sjukdomar och ökad risk för dödlighet4,5,6 , 7. det finns flera effektiva läkemedelsbehandlingar och psykologiska interventioner för MDD; dock mer än en tredjedel av patienterna inte uppnå remission med befintliga terapeutiska alternativ8,9,10,11. Därför bättre kartläggning av patofysiologin av MDD och utveckling av nya läkemedel är fortfarande av största vikt. För att hantera dessa uppgifter som vetenskapligt validerade djurmodeller behöver utnyttjas.

Oförutsägbara kronisk mild stress (UCMS) är en känd gnagare paradigm som används för att framkalla depressiva – och ångest-liknande beteenden12,13,14,15. Huvudsyftet med UCMS är att generera beteendemässiga underskott (såsom likgiltighet och beteendemässig förtvivlan12,15) på möss och råttor, och främja filmvisningar för potentiella terapeutiska farmakologiska medel. Förfarandet först introducerades av Katz16 och därefter utvecklats av Willner17,18, vilket ger stora beteendemässiga och neurobiologiska resultaten reminiscing depressiva symtomatologi12. Det var ursprungligen har utformats för råttor och senare hyste till möss13,19. I förfarandet för utsätts unga djur kroniskt för olika oförutsägbara milda stressfaktorer. Därefter administreras farmakologiska medel. Beteendemässiga och biologiska index erhålls när behandlingen upphör. En av de mer framträdande tester som utförts efter UCMS är sackaros preferens test (SPT). SPT är baserad på gnagare inneboende preferens för sötad lösning snarare än vatten och är allmänt erkänd som en viktig translationell modell för bedömning av likgiltighet12,18,20, 21 (som är en kärna urtecknet i människors depression22,23).

När du anger det fjärde decenniet sedan introduktionen, tillämpats UCMS på möss och råttor i otaliga studier. Flesta av dessa studier anställd UCMS som en metod för att framkalla depressiva-liknande beteenden12,13,21,24. Studier har också anställd modellen att generera anxiogenic effekter25,26,27,28,29. Sackaros och sackarin preferenser är de viktigaste tester används för att bedöma likgiltighet efter UCMS12,18,30,31,32,33. Andra anmärkningsvärda resultatåtgärder som mycket införlivas i UCMS litteratur är: svans suspensionen testa (TST)28,34,35, påtvingad simma testa (FST)28,34 , 36 , 37 (både mäta stress coping/beteendevetenskaplig förtvivlan), öppna fältet testet (OFT, mäta undersökande beteende, ångest-liknande beteende och rörelseaktivitet)25,28,38, högstämt Plus labyrint (EPM; mäta ångest-liknande beteende)25,39,40 och ytterligare tester mäter depressiva-liknande beteenden, ångest-liknande beteenden, kognitiv funktion och socialt beteende12 . Kronisk administrering av tricykliska antidepressiva (TCA, imipramin35,41,42,43, desipramin18,44,45 ), tetracykliska antidepressiva (TeCAs, maprotilin46,47, mianserin48), selektiva serotoninåterupptagshämmare (SSRI, fluoxetin46,47,49 , escitalopram30,50, paroxetin51,52), melatonin43,49, agomelatin53, fettsyra Amid hydrolas (Karin)-hämmare URB59754 och flera naturliga föreningar30,37,50,55,56,57,58 har varit visat för att vända de UCMS-inducerad depressiva – och ångest-liknande symtom. Sammantaget har dessa terapeutiska effekter inte erhållits via akuta behandlingar12 (t.ex., paroxetin51,52, imipramin53,54,59 ,60, fluoxetin53, agomelatin53, URB59754, brofaromine60).

Exponering för stress under barndomen och tonåren är en stor riskfaktor för främre bildandet av MDD (bland flera andra psykiska störningar) i vuxen ålder61,62,63. Hypotalamus-hypofys-binjure (HPA)-axeln är ett större neuroendokrina system som reglerar den bio-beteendemässiga Svaren stress64. Långvarig stress under de känsliga neurodevelopmental perioderna av uppväxten försämrar equilibriumen av HPA-axeln. Det kan framkalla ett tillstånd av ökad sympatisk aktivering, obalanserad reaktivitet och hypercortisolemia varar genom vilotillstånd; Således, rendering individer utsatta till depression eller ångest-relaterade psychopathologies65,66,67,68. UCMS tillräckligt översätter detta patogenes: betona ansökan under möss ‘ tonåren inducerar en långsiktig depressiva-liknande känslighet. Dessutom är de beteendemässiga underskotten som induceras av UCMS, varunder av betydande förändringar i HPA-axeln fungerande (t.ex., genom att orsaka en minskning i hippocampus hjärnan som härrör neurotrofa faktor [BDNF; ett protein som är mycket inblandade i equilibriumen av HPA-axeln69,70]30, eller genom att försämra regleringen av kortikosteron utsöndring till den blod71,72), i likhet med patofysiologin i människor12, 50,73.

UCMS har flera mediafärdigheter funktioner som modell för depression: e.g. (i) elicitering av likgiltighet (som betraktas en Endofenotyp av MDD23,74); (ii) UCMS gör det möjligt för att bedöma mängd depressiva-liknande beteenden såsom beteendemässig förtvivlan, nedsatt socialt beteende, försämring av päls och mer34; och (iii) kronisk (2-4 veckor), men inte akut, administrering av antidepressiva efter stress exponering kunde producera en utdragen terapeutisk effekt parallellt med den effekt som erhålls hos patienter av samma ombud30,75 ,76,77.

Dessa funktioner stärka giltigheten av UCMS jämfört med andra djurmodeller av depression. FST78 och den TST79 finns två modeller som används för att framkalla eller att bedöma depression-liknande beteende. Som modeller för att inducera depressiva-liknande beteenden har de tydliga brister jämfört med UCMS; de inte prompt långsiktiga beteendeförändringar och kanske bara återspeglar en justering av akut stress snarare än ger en slitstark depressiva-liknande manifestation76.

En alternativ djurmodell av depression är den sociala nederlag-modellen. Till skillnad från FST och av TST som denna modell (som UCMS) kräver kronisk stress (id est [dvs.], återkommande underkastelse av djuret till aversiva sociala möten med dominerande motsvarigheter)76,77 , 80 , 81 , 82. den största fördelen med den sociala nederlag-modellen är att den sysselsätter sociala stimuli som stressorer, vilket återspeglar rollen av psykosocial stress i patogenesen av mänskliga depression. Liknar UCMS, sociala nederlag modellen väcker långsiktiga depressiva-liknande beteenden och neuroendokrina förändringar. Ännu en gång parallellt UCMS, sociala nederlag-inducerad underskotten kan återföras via kronisk, men inte akut, administration av antidepressiva läkemedel. Sammantaget finns det stora stöd för utnyttjande av både UCMS och sociala nederlag som prekliniska apparaturar för utredning av patofysiologin bakom depression76,77,81,82 . Ett större underskott på sociala nederlag modellen är dock att det endast kan tillämpas på manliga gnagare, som kvinnor inte uppvisar tillräcklig aggressivt beteende mot varandra83. Contrastingly, UCMS har visats ge flera depressiva-liknande effekter på både manliga och kvinnliga möss34.

Förutsägbar kronisk mild stress (PCMS) är en annan gnagare modell som framtvingar en regim av dagliga återkommande exponering för återhållsamhet stress28,84,85,86,87. Flera studier har visat att PCMS ökade ångest-liknande beteenden28,87. även om det finns motstridiga rapporter vis-à-vis PCMS förmåga att inducera långsiktiga depressiva-liknande beteenden. Till skillnad från UCMS gett PCMS mindre tillfredsställande resultat med hänvisning till dess förmåga att framkalla en anhedonic-liknande tillstånd28,84,86. Detta är förenligt med de mänskliga fenomenologi, där oförutsägbara stressfaktorer är mer skadligt än förutsägbar kära88.

Protocol

Alla metoderna som beskrivs här har godkänts av den institutionella djur vård och användning kommittén av den akademiska College Tel-Aviv-Yaffo. 1. djur Användning före ungdomar (dvs., 3 veckor gammal) Institutet av Cancer Research (ICR) utkonkurrerat dö ut manliga möss. Randomize möss till två lika stora stress grupp (UCMS jämfört naiv). Använd 15 möss per behandlingsgrupp (t.ex.: om det finns 3 farmakologisk behandlingsgrupper använder 90…

Representative Results

För att bekräfta effekten av UCMS förfarandet för att inducera depressiva-liknande underskott, genomfördes en manipulation check. ICR utkonkurrerat dö ut hanmöss randomiserades till antingen UCMS eller naiva villkor (4 veckor, som beskrivs i protokollet 2.2). Därefter administrerades i SPT (6 dagar, enligt beskrivningen i protokoll 4) för att bedöma om möss efter som genomgår UCMS visat hedonisk underskott. Strax efter möss offrades och hippocampus var dissekeras ut helt för…

Discussion

I den mån MDD är en utbredd mycket försvagande sjukdom, endast delvis upp av nuvarande terapeutiska alternativ, är vetenskaplig strävan efter bättre behandlingar fortfarande en brådskande fråga. Tillsammans med innovationer i psykologiska tekniker krävs ytterligare läkemedelsbehandlingar för stor del av patienter som inte svarar på de befintliga läkemedel. Minutiös djurmodeller för depression är nyckelelement i denna uppgift. Sådana modeller underlätta filmvisningar för innovativa antidepressiva och ut…

Declarações

The authors have nothing to disclose.

Acknowledgements

Författarna vill tacka Gali Breuer för hennes hjälp i video produktionen. Denna forskning stöddes av Israel ministeriet för vetenskap, teknik & utrymme (grant nr 313552), av det nationella institutet för psykobiologi i Israel (NIPI-208-16-17b) och av stiftelsen Open University.

Materials

Heating lamp Ikea AA-19025-3
Heating pillow Sachs EF-188B
Mice restrainer
Portable electronic balance (*.** g)
Standard rubber stopper, size 5 Ancare #5.5R To avoid spillage during SPT
Straight open drinking tube (2.5") Ancare OT-100 To avoid spillage during SPT (insert drinking tube into rubber stopper)
2% sucrose solution
50ml conical centrifuge tube For the SPT
Pre-adolescent (approximately 20-days old) ICR outbred mice Envigo Hsd:ICR (CD-1)

Referências

  1. Murray, C. J., et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 380 (9859), 2197-2223 (2010).
  2. Bromet, E., et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine. 9, (2011).
  3. Kessler, R. C., et al. The Epidemiology of Major Depressive Disorder. JAMA: The Journal of the American Medical Association. 289 (23), 3095 (2003).
  4. Doom, J. R., Haeffel, G. J. Teasing apart the effects of cognition, stress, and depression on health. American Journal of Health Behavior. 37 (5), 610-619 (2013).
  5. Mykletun, A., Bjerkeset, O., Øverland, S., Prince, M., Dewey, M., Stewart, R. Levels of anxiety and depression as predictors of mortality: The HUNT study. British Journal of Psychiatry. 195 (2), 118-125 (2009).
  6. Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., Ustun, B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 370 (9590), 851-858 (2007).
  7. Otte, C., et al. Major depressive disorder. Nature Reviews Disease Primers. 2, (2016).
  8. Rush, A. J., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Amerian Journal of Psychiatry. 163 (11), 1905-1917 (2006).
  9. Cuijpers, P., Karyotaki, E., Weitz, E., Andersson, G., Hollon, S. D., Van Straten, A. The effects of psychotherapies for major depression in adults on remission, recovery and improvement: A meta-analysis. Journal of Affective Disorder. 159, 118-126 (2014).
  10. Lam, R. W., et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Canadian Journal of Psychiatry. 61 (9), 510-523 (2016).
  11. Kupfer, D. J., Frank, E., Phillips, M. L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet. 379 (9820), 1045-1055 (2012).
  12. Willner, P. Chronic mild stress (CMS) revisited: Consistency and behavioural- neurobiological concordance in the effects of CMS. Neuropsychobiology. 52 (2), 90-110 (2005).
  13. Surget, A., Belzung, C. Unpredictable chronic mild stress in mice. Experimental Animal Model in Neurobehavior Research. , 79-112 (2009).
  14. Hoffman, K. L. 2 -What can animal models tell us about depressive disorders?. Modelling Neuropsychiatric Disorder in Laboratory Animals. , (2016).
  15. Cryan, J. F., Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nature Review Drug Discovery. 4 (9), 775-790 (2005).
  16. Katz, R. J., Roth, K. A., Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience and Biobehavior Reviews. 5 (2), 247-251 (1981).
  17. Willner, P. The validity of animal models of depression. Psychopharmacology (Berlin). 83 (1), 1-16 (1984).
  18. Willner, P., Towell, A., Sampson, D., Sophokleous, S., Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berlin). 93 (3), 358-364 (1987).
  19. Ducottet, C., Belzung, C. Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiology and Behavior. 81 (3), 417-426 (2004).
  20. Treadway, M. T., Zald, D. H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews. 35 (3), 537-555 (2011).
  21. Pothion, S., Bizot, J. C., Trovero, F., Belzung, C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behavioural Brain Research. 155 (1), 135-146 (2004).
  22. American Psychiatric Association. . Diagnostic and Statistical Manual of Mental Disorders. 5th Edition (DSM-5). , (2013).
  23. Pizzagalli, D. A. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review Clinical Psychology. 10, 393-423 (2014).
  24. Nollet, M., Le Guisquet, A. -. M., Belzung, C. Models of depression: unpredictable chronic mild stress in mice. Current Protocols in Pharmacology. , (2013).
  25. Doron, R., Lotan, D., Rak-Rabl, A., Raskin-Ramot, A., Lavi, K., Rehavi, M. Anxiolytic effects of a novel herbal treatment in mice models of anxiety. Life Science. 90 (25-26), 995-1000 (2012).
  26. Rössler, A. S., Joubert, C., Chapouthier, G. Chronic mild stress alleviates anxious behaviour in female mice in two situations. Behavioural Processes. 49 (3), 163-165 (2000).
  27. Maslova, L. N., Bulygina, V. V., Markel, A. L. Chronic stress during prepubertal development: Immediate and long-lasting effects on arterial blood pressure and anxiety-related behavior. Psychoneuroendocrinology. 27 (5), 549-561 (2002).
  28. Zhu, S., Shi, R., Wang, J., Wang, J. -. F., Li, X. -. M. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. Neuroreport. 25 (14), 1151-1155 (2014).
  29. Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A., Morilak, D. A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 33 (2), 320-331 (2008).
  30. Burstein, O., et al. Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS One. 12 (11), (2017).
  31. Willner, P., Muscat, R., Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience and Biobehavioral Reviews. 16 (4), 525-534 (1992).
  32. Papp, M., Willner, P., Muscat, R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berlin). 104 (2), 255-259 (1991).
  33. Kumar, B., Kuhad, A., Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology (Berlin). 214 (4), 819-828 (2011).
  34. Mineur, Y. S., Belzung, C., Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioral Brain Research. 175 (1), 43-50 (2006).
  35. Ibarguen-Vargas, Y., et al. Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioral Brain Research. 202 (2), 245-251 (2009).
  36. Luo, D. D., An, S. C., Zhang, X. Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Research Bulletin. 77 (1), 8-12 (2008).
  37. Bhutani, M. K., Bishnoi, M., Kulkarni, S. K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacolology and Biochemistry Behavior. 92 (1), 39-43 (2009).
  38. Lin, Y. H., Liu, A. H., Xu, Y., Tie, L., Yu, H. M., Li, X. J. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas. Behavior Brain Research. 165 (1), 63-71 (2005).
  39. Cox, B. M., Alsawah, F., McNeill, P. C., Galloway, M. P., Perrine, S. A. Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat. Behavior Brain Research. 220 (1), 106-111 (2011).
  40. Lagunas, N., Calmarza-Font, I., Diz-Chaves, Y., Garcia-Segura, L. M. Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Hormones and Behavior. 58 (5), 786-791 (2010).
  41. Papp, M., Klimek, V., Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berlin). 115 (4), 441-446 (1994).
  42. Harkin, A., Houlihan, D. D., Kelly, J. P. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. Journal of Psychopharmacology. 16 (2), 115-123 (2002).
  43. Detanico, B. C., et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. European Journal of Pharmacology. 607 (1-3), 121-125 (2009).
  44. Kubera, M., et al. Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. Journal of Affective Disorder. 63 (1-3), 171-178 (2001).
  45. Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P., Haefely, W. E. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. European Neuropsychopharmacoly. 2 (1), 43-49 (1992).
  46. Muscat, R., Papp, M., Willner, P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berlin). 109 (4), 433-438 (1992).
  47. Yalcin, I., Belzung, C., Surget, A. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research. 193 (1), 140-143 (2008).
  48. Moreau, J. L., Bourson, A., Jenck, F., Martin, J. R., Mortas, P. Curative effects of the atypical antidepressant mianserin in the chronic mild stress-induced anhedonia model of depression. Journal of Psychiatry Neuroscience. 19 (1), 51-56 (1994).
  49. Kopp, C., Vogel, E., Rettori, M. C., Delagrange, P., Misslin, R. The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behavioural Pharmacology. 10 (1), 73-83 (1999).
  50. Doron, R., et al. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications. PLoS One. 9 (4), (2014).
  51. Elizalde, N., et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berlin). 199 (1), 1-14 (2008).
  52. Casarotto, P. C., Andreatini, R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. European Neuropsychopharmacology. 17 (11), 735-742 (2007).
  53. Papp, M., Gruca, P., Boyer, P. -. A., Mocaër, E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology. 28 (4), 694-703 (2003).
  54. Bortolato, M., et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biological Psychiatry. 62 (10), (2007).
  55. Liu, Y., et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacology Biochemistry Behavior. 104 (1), 27-32 (2013).
  56. Dai, Y., et al. Metabolomics study on the anti-depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress. Journal of Ethnopharmacology. 128 (2), 482-489 (2010).
  57. Zhang, D., Wen, X. S., Wang, X. Y., Shi, M., Zhao, Y. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress. Jouranl of Ethnopharmacology. 123 (1), 55-60 (2009).
  58. Li, Y. C., et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33 (3), 435-449 (2009).
  59. Monleon, S., Parra, A., Simon, V. M., Brain, P. F., D’Aquila, P., Willner, P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berlin). 117 (4), 453-457 (1995).
  60. Papp, M., Moryl, E., Willner, P. Pharmacological validation of the chronic mild stress model of depression. European Journal of Pharmacology. 296 (2), 129-136 (1996).
  61. Jansen, K., et al. Childhood trauma, family history, and their association with mood disorders in early adulthood. Acta Psychiatrica Scandinavica. (4), (2016).
  62. Kessler, R. C. THE EFFECTS OF STRESSFUL LIFE EVENTS ON DEPRESSION. Annual Review of Psychology. 48 (1), 191-214 (1997).
  63. Brady, K. T., Back, S. E. Childhood trauma, posttraumatic stress disorder, and alcohol dependence. Alcohol Research. 34 (4), 408-413 (2012).
  64. Pariante, C. M., Lightman, S. L. The HPA axis in major depression: classical theories and new developments. Trends in Neurosciences. 31 (9), 464-468 (2008).
  65. De Bellis, M. D., et al. Developmental traumatology part I: biological stress systems. Biological Psychiatry. 45 (10), 1259-1270 (1999).
  66. de Kloet, E. R., Joëls, M., Holsboer, F. Stress and the brain: from adaptation to disease. Nature Reviews Neurosciences. 6 (6), 463-475 (2005).
  67. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., Nemeroff, C. B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology. 33 (6), 693-710 (2008).
  68. Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., Putnam, F. W. Attentuation of cortisol across development for victims of sexual abuse. Developmental Psychopathology. 22 (1), 165-175 (2010).
  69. Bremne, J. D., Vermetten, E. Stress and development: behavioral and biological consequences. Developmental Psychopathology. 13 (3), 473-489 (2001).
  70. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. Neurobiology of depression. Neuron. 34 (1), 13-25 (2002).
  71. Liu, D., et al. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behavioural and Brain Research. 264, 9-16 (2014).
  72. Silberman, D. M., Wald, M., Genaro, A. M. Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol. 2 (4), 487-497 (2002).
  73. Bielajew, C., Konkle, A. T., Merali, Z. The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behavioural and Brain Research. 136 (2), 583-592 (2002).
  74. Vrieze, E., et al. Dimensions in major depressive disorder and their relevance for treatment outcome. Journal of Affective Disorder. 155 (1), 35-41 (2014).
  75. Doron, R., et al. A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sciences. 94 (2), 151-157 (2014).
  76. Nestler, E. J., Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosciences. 13 (10), 1161-1169 (2010).
  77. Yan, H. -. C., Cao, X., Das, M., Zhu, X. -. H., Gao, T. -. M. Behavioral animal models of depression. Neuroscience Bulletin. 26 (4), 327-337 (2010).
  78. Yankelevitch-Yahav, R., Franko, M., Huly, A., Doron, R. The Forced Swim Test as a Model of Depressive-like Behavior. Journal of Visualized Experiment. (97), (2015).
  79. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosciences and Biobehavioral Reviews. 29 (4-5), 571-625 (2005).
  80. Berton, O., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 80 (5762), 864-868 (2006).
  81. Krishnan, V., Nestler, E. J. Animal models of depression: Molecular perspectives. Current Topics in Behavioral Neurosciences. 7 (1), 121-147 (2011).
  82. Belzung, C., Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood and Anxiety Disorder. 1 (1), 9 (2011).
  83. Björkqvist, K. Social defeat as a stressor in humans. Physiology and Behavior. 73 (3), 435-442 (2001).
  84. Parihar, V. K., Hattiangady, B., Kuruba, R., Shuai, B., Shetty, A. K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Molecular Psychiatry. 16 (2), 171-183 (2011).
  85. Haile, C. N., GrandPre, T., Kosten, T. A. Chronic unpredictable stress, but not chronic predictable stress, enhances the sensitivity to the behavioral effects of cocaine in rats. Psychopharmacology (Berlin). 154 (2), 213-220 (2001).
  86. Suo, L., et al. Predictable chronic mild stress in adolescence increases resilience in adulthood. Neuropsychopharmacology. 38 (8), 1387-1400 (2013).
  87. Gameiro, G. H., et al. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiology and Behavior. 87 (4), 643-649 (2006).
  88. Anisman, H., Matheson, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioural Reviews. 29 (4-5), 525-546 (2005).
  89. Carr, W. J., Martorano, R. D., Krames, L. Responses of mice to odors associated with stress. J Comp Physiol Psychol. 71, 223-228 (1970).
  90. Zalaquett, C., Thiessen, D. The effects of odors from stressed mice on conspecific behavior. Physiology and Behavior. 50 (1), 221-227 (1991).
  91. Burstein, O., Shoshan, N., Doron, R., Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Progess in Neuro-Psychopharmacology Biological psychiatry. 84 (Part A), 129-139 (2018).
  92. Hedrich, H. J., Nicklas, W. Housing and Maintenance. Lab Mouse. , 521-545 (2012).
  93. Molendijk, M. L., Spinhoven, P., Polak, M., Bus, B. A. A., Penninx, B. W. J. H., Elzinga, B. M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Molecular Psychiatry. 19 (7), 791-800 (2014).
  94. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry. 50 (4), 260-265 (2001).
  95. Tye, K. M., et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 493 (7433), 537-541 (2013).
  96. Hamani, C., et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biological Psychiatry. 71 (1), 30-35 (2012).
  97. Hill, M. N., Hellemans, K. G. C., Verma, P., Gorzalka, B. B., Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neuroscience and Biobehavior Reviews. 36 (9), 2085-2117 (2012).
  98. Kasch, K. L., Rottenberg, J., Ba Arnow, ., Gotlib, I. H. Behavioral activation and inhibition systems and the severity and course of depression. Journal of Abnormal Psychology. 111 (4), 589-597 (2002).
  99. Faull, J. R., Halpern, B. P. Reduction of sucrose preference in the hamster by gymnemic acid. Physiology and Behavior. 7 (6), 903-907 (1971).
  100. Moreau, J. -. L., Scherschlicht, R., Jenck, F., Martin, J. R. Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behavioural Pharmacology. 6 (7), 682-687 (1995).
  101. Blier, P. Optimal use of antidepressants: when to act?. J Psychiatry Neurosci. 34 (1), 80 (2009).
  102. Frazer, A., Benmansour, S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 7, S23-S28 (2002).
  103. Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. The Tail Suspension Test. Journal of Visualized Experiments. (58), (2011).
  104. Song, L., Che, W., Min-wei, W., Murakami, Y., Matsumoto, K. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacology Biochemistry and Behavior. 83 (2), 186-193 (2006).
  105. Mao, Q. Q., Ip, S. P., Ko, K. M., Tsai, S. H., Che, C. T. Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33 (7), 1211-1216 (2009).
  106. Lutz, C. M., Linder, C. C., Davisson, M. T. Strains, Stocks and Mutant Mice. Lab Mouse. , 37-56 (2012).
  107. Yalcin, I., Aksu, F., Belzung, C. Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. European Journal of Pharmacology. 514 (2-3), 165-174 (2005).
  108. Van Boxelaere, M., Clements, J., Callaerts, P., D’Hooge, R., Callaerts-Vegh, Z. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One. 12 (11), (2017).
  109. Nadler, J. J., et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain Behavior. 3 (5), 303-314 (2004).
  110. Girard, I., Garland, T. Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology. 92 (4), 1553-1561 (2002).
  111. Gumuslu, E., et al. The antidepressant agomelatine improves memory deterioration and upregulates CREB and BDNF gene expression levels in unpredictable chronic mild stress (UCMS)-exposed mice. Drug Target Insights. 2014 (8), 11-21 (2014).
  112. Willner, P., Golembiowska, K., Klimek, V., Muscat, R. Changes in mesolimbic dopamine may explain stress-induced anhedonia. Psychobiology. 19 (1), 79-84 (1991).
  113. Peng, Y. L., Liu, Y. N., Liu, L., Wang, X., Jiang, C. L., Wang, Y. X. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. Journal of Neuroinflammation. 9, (2012).
  114. Liu, B., et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neurociência. 294, 193-205 (2015).
  115. Yalcin, I., Aksu, F., Bodard, S., Chalon, S., Belzung, C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: Possible involvement of the noradrenergic system. Behavioural Pharmacology. 18 (7), 623-631 (2007).
  116. Mineur, Y. S., Belzung, C., Crusio, W. E. Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neurociência. 150 (2), 251-259 (2007).
  117. Simchon-Tenenbaum, Y., Weizman, A., Rehavi, M. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration. Behav Brain Research. 282, 125-132 (2015).
  118. Hnasko, R. . ELISA: Methods and Protocols. , (2015).
  119. Watanabe, S. Social factors modulate restraint stress induced hyperthermia in mice. Brain Research. 1624, 134-139 (2015).
  120. Mineur, Y. S., Prasol, D. J., Belzung, C., Crusio, W. E. Agonistic behavior and unpredictable chronic mild stress in mice. Behaviour Genetics. 33 (5), 513-519 (2003).
  121. Frisbee, J. C., Brooks, S. D., Stanley, S. C., d’Audiffret, A. C. An Unpredictable Chronic Mild Stress Protocol for Instigating Depressive Symptoms, Behavioral Changes and Negative Health Outcomes in Rodents. Journal of Visualized Experiments. (106), (2015).
  122. Westenbroek, C., Ter Horst, G. J., Roos, M. H., Kuipers, S. D., Trentani, A., Den Boer, J. A. Gender-specific effects of social housing in rats after chronic mild stress exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 27 (1), 21-30 (2003).
  123. Bartolomucci, A., et al. Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology. 28 (4), 540-558 (2003).
  124. Võikar, V., Polus, A., Vasar, E., Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: Assessment of behavioral consequences. Genes, Brain and Behavior. 4 (4), (2005).
  125. Krohn, T. C., Sørensen, D. B., Ottesen, J. L., Hansen, A. K. The effects of individual housing on mice and rats: a review. Animal Welfare. 15 (4), 343-352 (2006).
check_url/pt/58184?article_type=t

Play Video

Citar este artigo
Burstein, O., Doron, R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J. Vis. Exp. (140), e58184, doi:10.3791/58184 (2018).

View Video