Summary

O protocolo de estresse suave crônico imprevisível para induzir Anhedonia em ratos

Published: October 24, 2018
doi:

Summary

Aqui nós apresentamos o protocolo imprevisíveis stress leve crônica em ratos. Este protocolo induz um fenótipo de depressivo, como a longo prazo e permite avaliar a eficácia dos antidepressivos putativos em reverter os défices de depressiva como comportamentais e neuromolecular.

Abstract

Depressão é uma doença altamente prevalente e debilitante, apenas parcialmente dirigida pelo atuais farmacoterapias. A falta de resposta ao tratamento por muitos pacientes solicita a necessidade de desenvolver novas alternativas terapêuticas e para melhor compreender a etiologia da doença. Modelos pré-clínicos com translação méritos são rudimentares para esta tarefa. Aqui nós apresentamos um protocolo para o método de estresse suave crônico imprevisível (UCMS) em camundongos. Neste protocolo, ratos adolescentes estão cronicamente expostos a intercambiando imprevisíveis estressores suaves. Assemelhando-se a patogênese da depressão nos seres humanos, exposição de estresse durante o período sensível da adolescência ratos instiga um fenótipo depressiva, como evidente na idade adulta. UCMS pode ser usado para as sessões dos antidepressivos na variedade de comportamentos como depressiva e índices de neuromolecular. Entre os mais proeminentes testes para avaliar o comportamento depressivo nos roedores é o teste de preferência de sacarose (SPT), que reflecte a anedonia (sintoma de núcleo da depressão). O SPT será também apresentado no presente protocolo. A capacidade de UCMS para induzir anedonia, instigar os défices comportamentais a longo prazo e permitir a reversão destes défices através de tratamento crônico (mas não agudo) com antidepressivos reforça a validade do protocolo, em comparação com outros protocolos de animal para indução de comportamentos depressivos, como.

Introduction

Transtorno depressivo maior (MDD) é uma condição debilitante, que tem sido indicada como a 11th causa da carga global de doença1, com uma prevalência de vida de 11 a 16%2,3. MDD tem sido associada com deficiências graves dos pacientes funcionamento social e ocupacional, diminuição de qualidade de vida, inúmeros transtornos mentais e físicos e risco aumentado para mortalidade4,5,6 , 7. existem diversas farmacoterapias eficazes e intervenções psicológicas para MDD; no entanto, mais do que o terço dos pacientes não alcançar remissão com o existente opções terapêuticas8,9,10,11. Portanto, é melhor mapeamento da fisiopatologia da MDD e desenvolvimento de novos medicamentos são ainda de maior importância. Para atender estas necessidades de modelos animais de tarefas cientificamente validadas para ser utilizado.

Estresse leve crônico imprevisível (UCMS) é um paradigma de roedor renomado usado para induzir comportamentos depressivos e ansiedade-como12,13,14,de15. O principal objectivo do UCMS é gerar déficits comportamentais (tais como anedonia e desespero comportamental12,15) em camundongos e ratos e promover sessões para potenciais terapêuticos agentes farmacológicos. O procedimento foi introduzido pela primeira vez por Katz16 e posteriormente desenvolvido por Willner participam17,18, produzindo resultados comportamentais e neurobiológicos vastos, relembrando a sintomatologia depressiva12. Foi inicialmente concebido para ratos e mais tarde acomodado para ratos13,19. No procedimento, adolescentes animais estão cronicamente expostos a diferentes estressores suaves imprevisíveis. Posteriormente, agentes farmacológicos são administrados. Índices comportamentais e biológicos são obtidos após o término do tratamento. Um dos mais proeminentes testes realizados seguindo UCMS é o teste de preferência de sacarose (SPT). O SPT é baseado em preferência inata dos roedores para a solução adoçada ao invés de água e é amplamente reconhecida como um modelo de translação essencial para avaliar anedonia12,18,20, 21 (que é um sintoma de núcleo em depressão humana22,.23).

Ao inserir a quarta década desde a sua introdução, UCMS foi aplicada em camundongos e ratos em estudos inumeráveis. A maioria destes estudos empregado UCMS como um método para induzir comportamentos depressivos, como12,13,21,24. Estudos também têm utilizado o modelo para gerar anxiogenic efeitos25,26,,27,28,29. Preferências de sacarose e sacarina são os principais exames utilizados para avaliar a anedonia UCMS12,18,30,31,32,33a seguir. Outras medidas de resultados notáveis que são altamente integradas de literatura UCMS são: a suspensão da cauda (TST)28,34,35de teste, teste de natação forçada (FST)28,34 , 36 , 37 (ambos medição stress enfrentamento/comportamental desespero), o teste de campo aberto (OFT; medindo o comportamento exploratório, comportamento de ansiedade e atividade locomotora)25,28,38, a elevada Além de labirinto (EPM; comportamento de ansiedade medição)25,39,40 e testes adicionais de medição comportamentos depressivos, como, comportamentos como ansiedade, funcionamento cognitivo e comportamento social12 . Administração crônica dos antidepressivos tricíclicos (TCAs; imipramina35,41,42,43, desipramina18,44,45 ), antidepressivos tetracíclicos (TeCAs; maprotilina46,47, Mianserina,48), inibidores seletivos da recaptação da serotonina (SSRIs; fluoxetine46,47,49 , escitalopram30,50,51,de paroxetina52), melatonina43,49, agomelatine53, o inibidor de hidrolase (FAAH) de amida de ácido graxo URB59754 e vários compostos naturais30,37,50,55,56,57,58 foram demonstrado para reverter os induzida por UCMS depressivo e ansiedade-como sintomas. Em geral, estes efeitos terapêuticos não foram obtidos através de tratamentos aguda12 (por exemplo, paroxetine51,52, imipramina53,54,59 ,,60, fluoxetine53, agomelatine53, URB59754, Brofaromina60).

Exposição de stress durante a infância e adolescência é um importante factor de risco para a formação anterior de MDD (entre vários outros transtornos psiquiátricos) na idade adulta61,,62,63. Eixo hipotálamo-hipófise-adrenal (HPA) é um sistema neuroendócrino importante regulando a bio-comportamental resposta ao estresse de64. Stress a longo prazo durante os períodos sensíveis de desenvolvimento neurológico da infância e adolescência prejudica o equilíbrio do eixo HPA. Isso pode provocar um estado de maior ativação simpática, reatividade desequilibrada e hipercortisolemia duradoura através do estado de repouso; tornando assim, os indivíduos vulneráveis à depressão ou ansiedade relacionados a psicopatologias65,,66,67,68. UCMS traduz adequadamente esta patogenia: estresse aplicação durante os ratos ‘ adolescência induz uma susceptibilidade de depressivo, como a longo prazo. Além disso, os défices comportamentais induzidos por UCMS, é constituída por alterações significativas em HPA eixo funcional (por exemplo, causando uma redução no fator neurotrófico derivado do cérebro hipocampo [BDNF; uma proteína altamente envolvidos no equilíbrio do HPA eixo69,70]30, ou alterando a regulação da secreção de corticosterona para o sangue71,72), em semelhança com a fisiopatologia em seres humanos12, 50,73.

UCMS tem várias características tocam como um modelo para a depressão: por exemplo, (i) o levantamento de anedonia (que é considerado um endophenotype de MDD23,74); (ii) UCMS permite avaliar a grande variedade de comportamentos depressivos, como como desespero comportamental, comportamento social reduzido, deterioração no estado de pele e mais34; e (iii) Crônicas (2-4 semanas), mas não aguda, administração de antidepressivos seguinte exposição de estresse poderia produzir um efeito terapêutico prolongado paralelo ao efeito Obtido em pacientes humanos pelos mesmos agentes30,75 ,76,,77.

Estas características reforçam a validade das UCMS em comparação com outros modelos animais de depressão. O FST78 e o TST79 são dois modelos que são usados para induzir ou para avaliar o comportamento depressivo. Como modelos para induzir comportamentos depressivos, como eles têm claras deficiências em relação ao UCMS; Não solicitar alterações comportamentais a longo prazo e podem meramente refletem um ajustamento de estresse agudo em vez de produzir um durável depressiva, como manifestação de76.

Um modelo alternativo de animal da depressão é o modelo de derrota social. Ao contrário do FST e o TST este modelo (como UCMS) exigem a aplicação de estresse crônico (id est [ou seja], a recorrente sujeição do animal ao contrário social encontros com contrapartes dominantes)76,,77 , 80 , 81 , 82. a principal vantagem do modelo social derrota é que emprega estímulos sociais como estressores, refletindo o papel do estresse psicossocial na patogênese da depressão humana. Semelhante ao UCMS, o modelo social derrota provoca alterações neuroendócrinas e comportamentos de depressivo, como a longo prazo. Novo paralelo UCMS, os défices sociais induzida a derrota podem ser revertidos através da crônica, mas não aguda, a administração de antidepressivos. Em geral, há um grande apoio para a utilização de ambos UCMS e derrota social como aparelhos pre-clínicos para investigar a fisiopatologia da depressão76,77,81,82 . No entanto, um grande défice de modelo a derrota social é que ele só poderia ser aplicado em roedores do sexo masculinos, como as fêmeas não apresentam comportamento agressivo suficiente para os outros83. Por outro lado, estima, UCMS foi mostrado para produzir vários efeitos depressivos em ambos os ratos masculinos e femininos34.

Estresse leve crônico previsível (PCMS) é outro modelo de roedor que impõe um regime de exposição recorrente diária a retenção tensão28,84,85,86,87. Vários estudos têm mostrado que o PCMS maior ansiedade-como comportamentos28,87; embora, há contraditório relatórios capacidade PCMS vis-à-vis para induzir comportamentos de depressivo, como a longo prazo. Ao contrário de UCMS, PCMS produziu resultados menos satisfatórios, referindo-se a sua capacidade de induzir um estado pertubado28,84,86. Isto é consistente com a fenomenologia humana, em que imprevisível estressores são mais prejudiciais do que previsíveis os88.

Protocol

Todos os métodos descritos aqui foram aprovados pelo Comitê de uso do acadêmico faculdade Tel-Aviv-Yaffo e institucional Cuidado Animal. 1. os animais Uso pré-adolescente (ou seja, 3 semanas de idade) Instituto de câncer Research (ICR) consanguíneo ratos masculinos. Randomize ratos para dois grupos de igual tamanho stress (UCMS vs ingênuo). Use 15 ratos por grupo de tratamento (por exemplo: se existem 3 farmacológico tratamento grupos usam 90 ratos…

Representative Results

A fim de confirmar a eficácia do procedimento de indução depressiva, como déficits UCMS, realizou-se uma verificação de manipulação. Camundongos machos ICR consanguíneo foram aleatoriamente para condições UCMS ou ingênuo (4 semanas, conforme descrito no protocolo 2.2). Posteriormente, o SPT (6 dias, conforme descrito no protocolo 4) foi administrada para avaliar se os ratos depois de submetidos a UCMS demonstraram déficits hedônico. Pouco depois, os ratos foram sacrificados …

Discussion

Na medida em que MDD é uma doença altamente debilitante generalizada, apenas parcialmente dirigida pelo atuais opções terapêuticas, a busca científica para melhores tratamentos ainda é um assunto urgente. Juntamente com as inovações em técnicas psicológicas, farmacoterapias adicionais são necessárias para a grande parte dos pacientes que não respondem às drogas existentes. Modelos animais meticulosos para a depressão são o elemento-chave nesta tarefa. Tais modelos seleções para antidepressivos inovador…

Declarações

The authors have nothing to disclose.

Acknowledgements

Os autores gostaria de agradecer Gali Breuer pela sua assistência na produção vídeo. Esta pesquisa foi apoiada pela Israel Ministério da ciência, tecnologia & espaço (concessão n. º 313552), pelo Instituto Nacional de Psicobiologia em Israel (NIPEU-208-16-17b) e pela Fundação da Universidade aberta.

Materials

Heating lamp Ikea AA-19025-3
Heating pillow Sachs EF-188B
Mice restrainer
Portable electronic balance (*.** g)
Standard rubber stopper, size 5 Ancare #5.5R To avoid spillage during SPT
Straight open drinking tube (2.5") Ancare OT-100 To avoid spillage during SPT (insert drinking tube into rubber stopper)
2% sucrose solution
50ml conical centrifuge tube For the SPT
Pre-adolescent (approximately 20-days old) ICR outbred mice Envigo Hsd:ICR (CD-1)

Referências

  1. Murray, C. J., et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 380 (9859), 2197-2223 (2010).
  2. Bromet, E., et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine. 9, (2011).
  3. Kessler, R. C., et al. The Epidemiology of Major Depressive Disorder. JAMA: The Journal of the American Medical Association. 289 (23), 3095 (2003).
  4. Doom, J. R., Haeffel, G. J. Teasing apart the effects of cognition, stress, and depression on health. American Journal of Health Behavior. 37 (5), 610-619 (2013).
  5. Mykletun, A., Bjerkeset, O., Øverland, S., Prince, M., Dewey, M., Stewart, R. Levels of anxiety and depression as predictors of mortality: The HUNT study. British Journal of Psychiatry. 195 (2), 118-125 (2009).
  6. Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., Ustun, B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 370 (9590), 851-858 (2007).
  7. Otte, C., et al. Major depressive disorder. Nature Reviews Disease Primers. 2, (2016).
  8. Rush, A. J., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Amerian Journal of Psychiatry. 163 (11), 1905-1917 (2006).
  9. Cuijpers, P., Karyotaki, E., Weitz, E., Andersson, G., Hollon, S. D., Van Straten, A. The effects of psychotherapies for major depression in adults on remission, recovery and improvement: A meta-analysis. Journal of Affective Disorder. 159, 118-126 (2014).
  10. Lam, R. W., et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Canadian Journal of Psychiatry. 61 (9), 510-523 (2016).
  11. Kupfer, D. J., Frank, E., Phillips, M. L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet. 379 (9820), 1045-1055 (2012).
  12. Willner, P. Chronic mild stress (CMS) revisited: Consistency and behavioural- neurobiological concordance in the effects of CMS. Neuropsychobiology. 52 (2), 90-110 (2005).
  13. Surget, A., Belzung, C. Unpredictable chronic mild stress in mice. Experimental Animal Model in Neurobehavior Research. , 79-112 (2009).
  14. Hoffman, K. L. 2 -What can animal models tell us about depressive disorders?. Modelling Neuropsychiatric Disorder in Laboratory Animals. , (2016).
  15. Cryan, J. F., Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nature Review Drug Discovery. 4 (9), 775-790 (2005).
  16. Katz, R. J., Roth, K. A., Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neuroscience and Biobehavior Reviews. 5 (2), 247-251 (1981).
  17. Willner, P. The validity of animal models of depression. Psychopharmacology (Berlin). 83 (1), 1-16 (1984).
  18. Willner, P., Towell, A., Sampson, D., Sophokleous, S., Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berlin). 93 (3), 358-364 (1987).
  19. Ducottet, C., Belzung, C. Behaviour in the elevated plus-maze predicts coping after subchronic mild stress in mice. Physiology and Behavior. 81 (3), 417-426 (2004).
  20. Treadway, M. T., Zald, D. H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews. 35 (3), 537-555 (2011).
  21. Pothion, S., Bizot, J. C., Trovero, F., Belzung, C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behavioural Brain Research. 155 (1), 135-146 (2004).
  22. American Psychiatric Association. . Diagnostic and Statistical Manual of Mental Disorders. 5th Edition (DSM-5). , (2013).
  23. Pizzagalli, D. A. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review Clinical Psychology. 10, 393-423 (2014).
  24. Nollet, M., Le Guisquet, A. -. M., Belzung, C. Models of depression: unpredictable chronic mild stress in mice. Current Protocols in Pharmacology. , (2013).
  25. Doron, R., Lotan, D., Rak-Rabl, A., Raskin-Ramot, A., Lavi, K., Rehavi, M. Anxiolytic effects of a novel herbal treatment in mice models of anxiety. Life Science. 90 (25-26), 995-1000 (2012).
  26. Rössler, A. S., Joubert, C., Chapouthier, G. Chronic mild stress alleviates anxious behaviour in female mice in two situations. Behavioural Processes. 49 (3), 163-165 (2000).
  27. Maslova, L. N., Bulygina, V. V., Markel, A. L. Chronic stress during prepubertal development: Immediate and long-lasting effects on arterial blood pressure and anxiety-related behavior. Psychoneuroendocrinology. 27 (5), 549-561 (2002).
  28. Zhu, S., Shi, R., Wang, J., Wang, J. -. F., Li, X. -. M. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. Neuroreport. 25 (14), 1151-1155 (2014).
  29. Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A., Morilak, D. A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 33 (2), 320-331 (2008).
  30. Burstein, O., et al. Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS One. 12 (11), (2017).
  31. Willner, P., Muscat, R., Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neuroscience and Biobehavioral Reviews. 16 (4), 525-534 (1992).
  32. Papp, M., Willner, P., Muscat, R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berlin). 104 (2), 255-259 (1991).
  33. Kumar, B., Kuhad, A., Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology (Berlin). 214 (4), 819-828 (2011).
  34. Mineur, Y. S., Belzung, C., Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioral Brain Research. 175 (1), 43-50 (2006).
  35. Ibarguen-Vargas, Y., et al. Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioral Brain Research. 202 (2), 245-251 (2009).
  36. Luo, D. D., An, S. C., Zhang, X. Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Research Bulletin. 77 (1), 8-12 (2008).
  37. Bhutani, M. K., Bishnoi, M., Kulkarni, S. K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacolology and Biochemistry Behavior. 92 (1), 39-43 (2009).
  38. Lin, Y. H., Liu, A. H., Xu, Y., Tie, L., Yu, H. M., Li, X. J. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas. Behavior Brain Research. 165 (1), 63-71 (2005).
  39. Cox, B. M., Alsawah, F., McNeill, P. C., Galloway, M. P., Perrine, S. A. Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat. Behavior Brain Research. 220 (1), 106-111 (2011).
  40. Lagunas, N., Calmarza-Font, I., Diz-Chaves, Y., Garcia-Segura, L. M. Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Hormones and Behavior. 58 (5), 786-791 (2010).
  41. Papp, M., Klimek, V., Willner, P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berlin). 115 (4), 441-446 (1994).
  42. Harkin, A., Houlihan, D. D., Kelly, J. P. Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. Journal of Psychopharmacology. 16 (2), 115-123 (2002).
  43. Detanico, B. C., et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. European Journal of Pharmacology. 607 (1-3), 121-125 (2009).
  44. Kubera, M., et al. Prolonged desipramine treatment increases the production of interleukin-10, an anti-inflammatory cytokine, in C57BL/6 mice subjected to the chronic mild stress model of depression. Journal of Affective Disorder. 63 (1-3), 171-178 (2001).
  45. Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P., Haefely, W. E. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. European Neuropsychopharmacoly. 2 (1), 43-49 (1992).
  46. Muscat, R., Papp, M., Willner, P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berlin). 109 (4), 433-438 (1992).
  47. Yalcin, I., Belzung, C., Surget, A. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research. 193 (1), 140-143 (2008).
  48. Moreau, J. L., Bourson, A., Jenck, F., Martin, J. R., Mortas, P. Curative effects of the atypical antidepressant mianserin in the chronic mild stress-induced anhedonia model of depression. Journal of Psychiatry Neuroscience. 19 (1), 51-56 (1994).
  49. Kopp, C., Vogel, E., Rettori, M. C., Delagrange, P., Misslin, R. The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behavioural Pharmacology. 10 (1), 73-83 (1999).
  50. Doron, R., et al. Escitalopram or novel herbal mixture treatments during or following exposure to stress reduce anxiety-like behavior through corticosterone and BDNF modifications. PLoS One. 9 (4), (2014).
  51. Elizalde, N., et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berlin). 199 (1), 1-14 (2008).
  52. Casarotto, P. C., Andreatini, R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. European Neuropsychopharmacology. 17 (11), 735-742 (2007).
  53. Papp, M., Gruca, P., Boyer, P. -. A., Mocaër, E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology. 28 (4), 694-703 (2003).
  54. Bortolato, M., et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biological Psychiatry. 62 (10), (2007).
  55. Liu, Y., et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacology Biochemistry Behavior. 104 (1), 27-32 (2013).
  56. Dai, Y., et al. Metabolomics study on the anti-depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress. Journal of Ethnopharmacology. 128 (2), 482-489 (2010).
  57. Zhang, D., Wen, X. S., Wang, X. Y., Shi, M., Zhao, Y. Antidepressant effect of Shudihuang on mice exposed to unpredictable chronic mild stress. Jouranl of Ethnopharmacology. 123 (1), 55-60 (2009).
  58. Li, Y. C., et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33 (3), 435-449 (2009).
  59. Monleon, S., Parra, A., Simon, V. M., Brain, P. F., D’Aquila, P., Willner, P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berlin). 117 (4), 453-457 (1995).
  60. Papp, M., Moryl, E., Willner, P. Pharmacological validation of the chronic mild stress model of depression. European Journal of Pharmacology. 296 (2), 129-136 (1996).
  61. Jansen, K., et al. Childhood trauma, family history, and their association with mood disorders in early adulthood. Acta Psychiatrica Scandinavica. (4), (2016).
  62. Kessler, R. C. THE EFFECTS OF STRESSFUL LIFE EVENTS ON DEPRESSION. Annual Review of Psychology. 48 (1), 191-214 (1997).
  63. Brady, K. T., Back, S. E. Childhood trauma, posttraumatic stress disorder, and alcohol dependence. Alcohol Research. 34 (4), 408-413 (2012).
  64. Pariante, C. M., Lightman, S. L. The HPA axis in major depression: classical theories and new developments. Trends in Neurosciences. 31 (9), 464-468 (2008).
  65. De Bellis, M. D., et al. Developmental traumatology part I: biological stress systems. Biological Psychiatry. 45 (10), 1259-1270 (1999).
  66. de Kloet, E. R., Joëls, M., Holsboer, F. Stress and the brain: from adaptation to disease. Nature Reviews Neurosciences. 6 (6), 463-475 (2005).
  67. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., Nemeroff, C. B. The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology. 33 (6), 693-710 (2008).
  68. Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., Putnam, F. W. Attentuation of cortisol across development for victims of sexual abuse. Developmental Psychopathology. 22 (1), 165-175 (2010).
  69. Bremne, J. D., Vermetten, E. Stress and development: behavioral and biological consequences. Developmental Psychopathology. 13 (3), 473-489 (2001).
  70. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., Monteggia, L. M. Neurobiology of depression. Neuron. 34 (1), 13-25 (2002).
  71. Liu, D., et al. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behavioural and Brain Research. 264, 9-16 (2014).
  72. Silberman, D. M., Wald, M., Genaro, A. M. Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol. 2 (4), 487-497 (2002).
  73. Bielajew, C., Konkle, A. T., Merali, Z. The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behavioural and Brain Research. 136 (2), 583-592 (2002).
  74. Vrieze, E., et al. Dimensions in major depressive disorder and their relevance for treatment outcome. Journal of Affective Disorder. 155 (1), 35-41 (2014).
  75. Doron, R., et al. A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sciences. 94 (2), 151-157 (2014).
  76. Nestler, E. J., Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosciences. 13 (10), 1161-1169 (2010).
  77. Yan, H. -. C., Cao, X., Das, M., Zhu, X. -. H., Gao, T. -. M. Behavioral animal models of depression. Neuroscience Bulletin. 26 (4), 327-337 (2010).
  78. Yankelevitch-Yahav, R., Franko, M., Huly, A., Doron, R. The Forced Swim Test as a Model of Depressive-like Behavior. Journal of Visualized Experiment. (97), (2015).
  79. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosciences and Biobehavioral Reviews. 29 (4-5), 571-625 (2005).
  80. Berton, O., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 80 (5762), 864-868 (2006).
  81. Krishnan, V., Nestler, E. J. Animal models of depression: Molecular perspectives. Current Topics in Behavioral Neurosciences. 7 (1), 121-147 (2011).
  82. Belzung, C., Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood and Anxiety Disorder. 1 (1), 9 (2011).
  83. Björkqvist, K. Social defeat as a stressor in humans. Physiology and Behavior. 73 (3), 435-442 (2001).
  84. Parihar, V. K., Hattiangady, B., Kuruba, R., Shuai, B., Shetty, A. K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Molecular Psychiatry. 16 (2), 171-183 (2011).
  85. Haile, C. N., GrandPre, T., Kosten, T. A. Chronic unpredictable stress, but not chronic predictable stress, enhances the sensitivity to the behavioral effects of cocaine in rats. Psychopharmacology (Berlin). 154 (2), 213-220 (2001).
  86. Suo, L., et al. Predictable chronic mild stress in adolescence increases resilience in adulthood. Neuropsychopharmacology. 38 (8), 1387-1400 (2013).
  87. Gameiro, G. H., et al. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiology and Behavior. 87 (4), 643-649 (2006).
  88. Anisman, H., Matheson, K. Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioural Reviews. 29 (4-5), 525-546 (2005).
  89. Carr, W. J., Martorano, R. D., Krames, L. Responses of mice to odors associated with stress. J Comp Physiol Psychol. 71, 223-228 (1970).
  90. Zalaquett, C., Thiessen, D. The effects of odors from stressed mice on conspecific behavior. Physiology and Behavior. 50 (1), 221-227 (1991).
  91. Burstein, O., Shoshan, N., Doron, R., Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Progess in Neuro-Psychopharmacology Biological psychiatry. 84 (Part A), 129-139 (2018).
  92. Hedrich, H. J., Nicklas, W. Housing and Maintenance. Lab Mouse. , 521-545 (2012).
  93. Molendijk, M. L., Spinhoven, P., Polak, M., Bus, B. A. A., Penninx, B. W. J. H., Elzinga, B. M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Molecular Psychiatry. 19 (7), 791-800 (2014).
  94. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry. 50 (4), 260-265 (2001).
  95. Tye, K. M., et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 493 (7433), 537-541 (2013).
  96. Hamani, C., et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: Role of serotonin and brain derived neurotrophic factor. Biological Psychiatry. 71 (1), 30-35 (2012).
  97. Hill, M. N., Hellemans, K. G. C., Verma, P., Gorzalka, B. B., Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neuroscience and Biobehavior Reviews. 36 (9), 2085-2117 (2012).
  98. Kasch, K. L., Rottenberg, J., Ba Arnow, ., Gotlib, I. H. Behavioral activation and inhibition systems and the severity and course of depression. Journal of Abnormal Psychology. 111 (4), 589-597 (2002).
  99. Faull, J. R., Halpern, B. P. Reduction of sucrose preference in the hamster by gymnemic acid. Physiology and Behavior. 7 (6), 903-907 (1971).
  100. Moreau, J. -. L., Scherschlicht, R., Jenck, F., Martin, J. R. Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behavioural Pharmacology. 6 (7), 682-687 (1995).
  101. Blier, P. Optimal use of antidepressants: when to act?. J Psychiatry Neurosci. 34 (1), 80 (2009).
  102. Frazer, A., Benmansour, S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 7, S23-S28 (2002).
  103. Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. The Tail Suspension Test. Journal of Visualized Experiments. (58), (2011).
  104. Song, L., Che, W., Min-wei, W., Murakami, Y., Matsumoto, K. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacology Biochemistry and Behavior. 83 (2), 186-193 (2006).
  105. Mao, Q. Q., Ip, S. P., Ko, K. M., Tsai, S. H., Che, C. T. Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 33 (7), 1211-1216 (2009).
  106. Lutz, C. M., Linder, C. C., Davisson, M. T. Strains, Stocks and Mutant Mice. Lab Mouse. , 37-56 (2012).
  107. Yalcin, I., Aksu, F., Belzung, C. Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. European Journal of Pharmacology. 514 (2-3), 165-174 (2005).
  108. Van Boxelaere, M., Clements, J., Callaerts, P., D’Hooge, R., Callaerts-Vegh, Z. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS One. 12 (11), (2017).
  109. Nadler, J. J., et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain Behavior. 3 (5), 303-314 (2004).
  110. Girard, I., Garland, T. Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology. 92 (4), 1553-1561 (2002).
  111. Gumuslu, E., et al. The antidepressant agomelatine improves memory deterioration and upregulates CREB and BDNF gene expression levels in unpredictable chronic mild stress (UCMS)-exposed mice. Drug Target Insights. 2014 (8), 11-21 (2014).
  112. Willner, P., Golembiowska, K., Klimek, V., Muscat, R. Changes in mesolimbic dopamine may explain stress-induced anhedonia. Psychobiology. 19 (1), 79-84 (1991).
  113. Peng, Y. L., Liu, Y. N., Liu, L., Wang, X., Jiang, C. L., Wang, Y. X. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. Journal of Neuroinflammation. 9, (2012).
  114. Liu, B., et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neurociência. 294, 193-205 (2015).
  115. Yalcin, I., Aksu, F., Bodard, S., Chalon, S., Belzung, C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: Possible involvement of the noradrenergic system. Behavioural Pharmacology. 18 (7), 623-631 (2007).
  116. Mineur, Y. S., Belzung, C., Crusio, W. E. Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neurociência. 150 (2), 251-259 (2007).
  117. Simchon-Tenenbaum, Y., Weizman, A., Rehavi, M. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration. Behav Brain Research. 282, 125-132 (2015).
  118. Hnasko, R. . ELISA: Methods and Protocols. , (2015).
  119. Watanabe, S. Social factors modulate restraint stress induced hyperthermia in mice. Brain Research. 1624, 134-139 (2015).
  120. Mineur, Y. S., Prasol, D. J., Belzung, C., Crusio, W. E. Agonistic behavior and unpredictable chronic mild stress in mice. Behaviour Genetics. 33 (5), 513-519 (2003).
  121. Frisbee, J. C., Brooks, S. D., Stanley, S. C., d’Audiffret, A. C. An Unpredictable Chronic Mild Stress Protocol for Instigating Depressive Symptoms, Behavioral Changes and Negative Health Outcomes in Rodents. Journal of Visualized Experiments. (106), (2015).
  122. Westenbroek, C., Ter Horst, G. J., Roos, M. H., Kuipers, S. D., Trentani, A., Den Boer, J. A. Gender-specific effects of social housing in rats after chronic mild stress exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 27 (1), 21-30 (2003).
  123. Bartolomucci, A., et al. Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology. 28 (4), 540-558 (2003).
  124. Võikar, V., Polus, A., Vasar, E., Rauvala, H. Long-term individual housing in C57BL/6J and DBA/2 mice: Assessment of behavioral consequences. Genes, Brain and Behavior. 4 (4), (2005).
  125. Krohn, T. C., Sørensen, D. B., Ottesen, J. L., Hansen, A. K. The effects of individual housing on mice and rats: a review. Animal Welfare. 15 (4), 343-352 (2006).
check_url/pt/58184?article_type=t

Play Video

Citar este artigo
Burstein, O., Doron, R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J. Vis. Exp. (140), e58184, doi:10.3791/58184 (2018).

View Video