Aquí, presentamos un protocolo para determinar cuantitativamente el contenido de ficobiliproteína en la cianobacteria Synechocystis mediante un método espectrofotométrico. El procedimiento de extracción fue aplicado con éxito a otras cepas de cianobacterias y algas; sin embargo, debido a variaciones en los espectros de absorción del pigmento, es necesario probar las ecuaciones espectrofotométricas para cada cepa individual.
Esto es un protocolo simple para la determinación cuantitativa del contenido de ficobiliproteína en la cianobacteria Synechocystisdel modelo. Ficobiliproteínas son los componentes más importantes de phycobilisomes, las antenas principales de recolección de luz en cianobacterias y varios taxones de algas. Phycobilisomes de Synechocystis contienen dos ficobiliproteínas: ficocianina y allophycocyanin. Este protocolo describe un simple, eficiente y confiable método para la determinación cuantitativa de ficocianina y allophycocyanin en esta cianobacteria modelo. Se compararon varios métodos de extracción de ficobiliproteína y cuantificación espectrofotométrica. El procedimiento de extracción como se describe en este protocolo se aplicó con éxito a otras cepas de cianobacterias como Cyanothece SP., Synechococcuselongatus, Spirulina sp., Arthrospira sp., y Nostoc SP., así como las algas rojas Porphyridium cruentum. Sin embargo, los coeficientes de extinción de ficobiliproteínas específicos de distintos taxones pueden variar y por lo tanto, se recomienda validar el método de cuantificación espectrofotométrica para cada cepa individual. El protocolo requiere poco tiempo y puede realizarse en cualquier laboratorio de Ciencias de la vida estándar ya que requiere equipos estándar.
fPhycobiliproteins son complejos de proteína pigmento soluble en agua que representan los componentes principales de las antenas de luz-cosechar en procariotas cianobacterias (Cyanophyta) y varios taxones eucariotas (Glaucophyta, Rhodophyta y Cryptophyta)1. Se producen principalmente como complejos supramoleculares llamados phycobilisomes y por lo general se unen a la superficie de las membranas fotosintéticas en el lado del estroma, a excepción de Cryptophyta, donde se localizan las ficobiliproteínas en la tilacoides lumen2. Hasta la fecha se han identificado cuatro tipos de ficobiliproteínas: el núcleo allophycocyanin y la ficocianina, ficoeritrina y phycoerythrocyanin periférica1. Como los complejos principales de recolección de luz, phycobilisomes representan uno de los factores cruciales de la productividad de culturas masivas de algas y cianobacterias. Se ha demostrado que phycobilisomes truncamiento puede aumentar la acumulación de biomasa bajo luz fuerte3. Por otra parte, con irradiación moderada o baja, el truncamiento de la antena daba como resultado tasas de crecimiento y acumulación de biomasa reducción3,4. Ficobiliproteínas comercialmente se utilizan como colorantes de alimentos, productos farmacéuticos y aditivos alimentarios, en la industria cosmética y fluorescencia sondas con aplicaciones en citometría de flujo, inmunoensayos fluorescentes y microscopía de fluorescencia5.
Este protocolo se centra en la determinación cuantitativa de ficobiliproteínas en la cianobacteria Synechocystisdel modelo. Cianobacterias están el primeros autótrofos fotosíntesis oxygenic; ha formando la Biosfera de la tierra por más de 2,4 billones de años6. Desempeñan un papel crucial en los ciclos biogeoquímicos globales de nitrógeno, carbono, oxígeno y otros elementos. Entre cianobacterias, una cepa unicelular Synechocystis ganó una posición única ya que fue el primer cianobacteria con la totalidad del genoma secuenciado7,8, es naturalmente transformable por ADN exógeno9, y realiza un crecimiento estable y relativamente rápido de10,11. En Synechocystis, el componente base de antena, allophycocyanin, se asocia con las proteínas integrales de membrana y la ficocianina adjunto se encuentra en la periferia de la membrana del thylakoid.
Varios métodos para la extracción de ficobiliproteína y cuantificación se comparan dentro de este protocolo. El procedimiento de extracción final fue aplicado con éxito para Synechocystis, así como a otras cepas de cianobacterias, incluyendo Cyanothece SP., Synechococcuselongatus, Spirulina sp., Arthrospira SP.y Nostoc SP. y se aplicó con éxito a algas rojas Porphyridium cruentum. Por lo tanto, el método desarrollado en este protocolo puede considerarse como un método universal para la extracción de ficobiliproteína. A pesar de que algunos de los métodos de extracción probadas resultaron en mayores rendimientos de proteína total, aquí describe procedimiento de extracción siempre ficobiliproteína más rendimientos con el menor contenido de clorofila un residuo en el Extracto de ficobiliproteína. Reducir el contenido de clorofila a fue esencial para la correcta ficocianina y cuantificación espectrofotométrica allophycocyanin.
Los espectros de absorción de ficobiliproteína pueden variar significativamente entre diferentes algas y cianobacterias especies12,13,14,15,16,17 e incluso entre varias cepas de un género de cianobacterias solo18. Por lo tanto, las longitudes de onda específicas y coeficientes de absorción según lo utilizado para la determinación de ficocianina y allophycocyanin en Synechocystis no son generalmente aplicables a otras cepas. Además, Synechocystis no contienen ficoeritrina y phycoerythrocyanin que se puede encontrar en algunas algas y cianobacterias. A los efectos de la determinación de ficobiliproteínas en cepas que no sean de Synechocystis, se recomienda evaluar las ecuaciones espectrofotométricas para cada cepa individual.
Aunque el protocolo contiene dos pasos más (durante la noche la liofilización de los pellets celulares y extracción de proteínas de 1 hora), el tiempo de trabajo total para la cuantificación de ficobiliproteínas es no más de 2 horas.
Este protocolo describe un método sencillo, rápido y reproducible para la cuantificación del contenido de ficobiliproteína en la cianobacteria Synechocystisdel modelo. Se comparan varios métodos de homogeneización de la célula, extracción de proteínas y cuantificación de ficocianina y allophycocyanin y el protocolo final representa una combinación de lo óptimo de cada procedimiento individual. Como datos representativos, se cuantificó el contenido de ficobiliproteínas en Synechocystis cél…
The authors have nothing to disclose.
El protocolo fue adoptado de una anterior publicación11. T. Z., CH. D. y J. Č. fueron apoyados por el Ministerio de educación, juventud y deportes de la República Checa en el programa nacional de sustentabilidad (NPU I), concesión número LO1415. J. Č. también fue apoyada por el GA CR, número 18-24397S. Acceso a los instrumentos y otras instalaciones fue apoyado por la infraestructura de investigación Checa para Biología de sistemas C4SYS (no proyecto LM2015055). M. A. S. fue apoyado por una beca de la Fundación de la ciencia rusa [no. 14-14-00904].
Synechocystis sp. PCC 6803 | Institut Pasteur, Paris, France | 6803 | Cyanobacterium strain |
Roti-CELL PBS | Carl Roth GmbH + Co. KG, Karlsruhe, Germany | 9143.1 | Phosphate-Buffered Saline (PBS) solution, pH 7.4 |
Eppendorf safe-lock tubes | Eppendorf, Hamburk, Germany | 30120086 | Safe-lock tubes 1.5 ml |
VWR 80-Place Storage System | VWR International, Radnor, Pennsylvania, USA | 30128-282 | Holder for safe-lock tubes |
RAININ 100 µl -1000 µl | Mettler-Toledo, Columbus, Ohio, USA | 17014382 | Pipette |
GP-LTS-A-1000µL-/F-768/8 | Mettler-Toledo, Columbus, Ohio, USA | 30389272 | Pipette tips |
Rotina 420R | Hettich, Kirchlengern, Germany | 4701 | Refrigerated centrifuge for 1.5 ml safe-lock tubes and 15 ml conical centrifuge tubes |
LCexv 4010 | Liebherr, Bulle, Switzerland | 9005382197172 | Refrigerator and freezer -20 °C |
Revco ExF -86°C Upright Ultra-Low Temperature Freezer | Thermo Fisher Scientific, Waltham, Massachusetts, USA | EXF24086V | Freezer -80 °C |
CoolSafe | LaboGene, Lillerød, Denmark | 7.001.000.615 | Freeze dryer |
UV-2600 | Shimadzu, Kyoto, Japan | UV-2600 | Spectrophotometer |
Hellma absorption cuvettes, semi Micro | Sigma-Aldrich, St. Louis, Missouri, USA | Z600288 | VIS/UV-VIS semi-micro cuvettes 0.75-1.5 ml, spectral range 200-2500 nm |
Silamat S6 | Ivoclar Vivadent, Schaan, Liechtenstein | 602286WU | Homogenizer |
Solid-glass beads | Sigma-Aldrich, St. Louis, Missouri, USA | Z273627 | Glass bead of the diameter 2 mm |
CPA225D-0CE | Sartorius AG, Göttingen, Germany | SECURA225D-1OBR | Analytical balances |
C-Phycocyanin from Spirulina sp. | Sigma-Aldrich, St. Louis, Missouri, USA | P2172 | Phycocyanin standard |
Allophycocyanin | Sigma-Aldrich, St. Louis, Missouri, USA | A7472 | Allophycocyanin standard |
Bicinchoninic Acid Kit | Sigma-Aldrich, St. Louis, Missouri, USA | BCA1, B9643 | Complete kit for total proteins determination |
AlgaeTron | Photon System Instruments Ltd., Drásov, Czech Republic | AG 130-ECO | Cultivation chamber for E. flasks, with controllable light and atmosphere |
Photobioreactor | Photon System Instruments Ltd., Drásov, Czech Republic | FMT-150 | Cultivation equipment for cyanobacteria and algae with completely controllable environment |
Cellometer | Nexcelom Bioscience, Lawrence, Massachusetts, USA | Auto M10 | Cell counter |
Corning 15 mL centrifuge tubes | Sigma-Aldrich, St. Louis, Missouri, USA | CLS430791 | 15 ml Centrifuge tube for dry weigth sampling |
Herasafe KS | Thermo Fisher Scientific, Waltham, Massachusetts, USA | 51024579 | Laminar flow hood |