Summary

原位杂交法在小鼠心脏切片组织特异 miRNA 表达谱分析中的应用

Published: September 15, 2018
doi:

Summary

微 rna (miRNAs) 是短而高度同源的 RNA 序列, 充当信使 rna (基因) 的转录后调节剂。目前 miRNA 检测方法的灵敏度和特异性各不相同。我们描述了一个协议, 结合原位杂交和染色的同时检测 miRNA 和蛋白质分子在小鼠心脏组织切片。

Abstract

微 rna (miRNAs) 是单链 RNA 转录, 绑定到信使 rna (基因) 和抑制他们的翻译或促进其退化。到目前为止, miRNAs 已牵连到大量的生物和疾病进程, 这标志着需要可靠的检测方法的 miRNA 记录。在这里, 我们描述了一个详细的协议, 辛标记 (挖掘) 锁定核酸 (低噪声放大) 探针为基础的 miRNA 检测, 结合蛋白染色的小鼠心脏切片。首先, 采用原位杂交技术, 利用探针对控制和心肌肥厚小鼠心脏切片中的 miRNA-182 表达进行鉴别。接下来, 我们进行了染色肌钙蛋白 T (cTnT) 蛋白, 在相同的部分, 共同本地化 miRNA-182 与心肌细胞。使用该协议, 我们能够检测 miRNA-182 通过碱性磷酸酶为基础的比色法, 并通过荧光染色 cTnT。该协议可用于检测任何 miRNA 的表达, 通过挖掘标记的低噪声放大探针和相关蛋白表达的小鼠心脏组织切片。

Introduction

微 rna (miRNAs) 是短的 (18–25核苷酸), 单链, 非编码 rna, 在转录后水平的基因表达负调节作用, 抑制信使 RNA (mRNA) 翻译和/或促进 mRNA 退化1. miRNAs 是从编码或非编码基因的内含子或外显子中转录出来的, 并在细胞核中被 DROSHA、前体 miRNAs (前 miRNAs), 后者为70核苷酸2的短茎环结构。在细胞质出口之后, DICER 将 miRNAs 进一步加工成成熟的 miRNAs, 跨度18–25核苷酸3,4。随后, RNA 诱导的沉默复合体 (RISC) 将这些 miRNAs 作为单链 rna, 允许它们绑定到其目标基因的 3 ‘ 未翻译区 (3 ‘-UTR), 以抑制其表达式3,5.

在过去的三年里, 自从他们第一次被发现以来, miRNAs 已经出现, 掌握基因表达的调控者, 他们自己的表达水平被严密控制6。miRNAs 的角色已经在器官发育789101112、维持稳态1314, 以及包括神经1516171819、心血管20、自身免疫状况21的疾病情境 ,22, 癌症23,24, 其他25。对 miRNA 表达模式相关性的越来越多的认识, 提出了 miRNA 转录的可靠检测方法的必要性。这些方法包括实时 PCR、微阵列、北印迹、原位杂交等, 它们在灵敏度、特异性和定量能力上各不相同, 主要是由于 miRNA 记录由短而高度同源序列6

我们最近报告了 miRNA-182 在心肌肥厚26的发展中的重要作用, 这一状况描述了心脏的结构适应反应了高血流动力学要求27,28。心脏肥大的特点是心肌质量的增加, 如果与不良重塑29, 可能导致心力衰竭的风险增加, 一个条件占8.5% 的所有死亡归因于心血管疾病30

在这里, 我们描述了我们的协议, 结合原位杂交与辛标记 (挖掘) 锁定核酸 (低噪声放大) 探针和染色同时检测 miRNA 和蛋白质分子在小鼠心脏组织切片, 在我们的心肌肥厚模型。

Protocol

本研究的小鼠心脏组织样本是按照相关法律和机构指南获得的, 并经耶鲁大学机构动物护理和使用委员会批准。 1. 解决方案准备 RNase 免费 ddH2o, 用5毫升 0.1% diethylpyrocarbonate (DEPC) 在室温下 (RT) 处理5升的 ddH2o。高压釜 (121 °c) 停用 DEPC。使用 DEPC 处理的 ddH2O 进行下游溶液的制备, 如下所示。注意: DEPC 是已知的致癌物质, 只有油烟机中的手柄。</l…

Representative Results

利用 miRNA 和 U6-snRNA 对小鼠心脏切片进行 miRNA原位杂交, 分别作阴性和阳性对照。阳性染色用蓝色表示, 而阴性染色则是由于缺乏颜色发展 (图 1A-1B)。从控制和 PlGF overexpressing 小鼠的心脏切片评价 miRNA-182 心肌细胞特异表达。在αMHC 启动子下携带 PlGF 转基因的小鼠在6周的转基因活化26中发展心肌肥厚, 继发血管生成?…

Discussion

miRNA 的成绩单检测可以通过不同的技术, 差异的灵敏度, 特异性和数量的权力。在这里, 我们展示了 miRNA原位杂交与染色的耦合, 并描述了一个协议, 允许同时评估 miRNA 和蛋白质分子的表达水平, 在同一心脏部分。我们首先展示了如何在石蜡嵌段心脏切片上进行挖标低噪声 miRNA 探针原位杂交。接下来, 我们描述如何在同一节上执行染色 cTnT。最后, 我们演示了如何合并生成的颜色和荧光?…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们要感谢 Athanasios Papangelis 对手稿的批评性评论。FM 由生物技术和生物科学研究理事会 (BBSRC) 支持;BB/M009424/1)。IP 由美国心脏协会科学家发展补助金 (17SDG33060002) 支持。

Materials

Diethylpyrocarbonate Sigma Aldrich D5758 DEPC
Phosphate buffered saline Sigma Aldrich P4417 PBS
Tween-20 American Bioanalytical AB02038 non-ionic surfactant
Histoclear National Diagnostics HS-200
Proteinase K, recombinant, PCR Grade Sigma Aldrich 3115879001 ProK
Paraformaldehyde Sigma Aldrich P6148 PFA
Sodium Chloride ThermoFisher S271 NaCl
Magnesium Chloride Hexahydrate ThermoFisher M33 MgCl2
Tris Sigma Aldrich T6066
Hydrochloric Acid Solution, 1 N ThermoFisher SA48 HCl
Hydrochloric Acid Solution, 12 N ThermoFisher S25358 HCl
1-Methylimidazole Sigma Aldrich 336092
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride Sigma Aldrich 39391 EDC
Hydrogen peroxide solution H2O2 Sigma Aldrich 216763 H2O2
Trisodium citrate dihydrate Sigma Aldrich S1804 Sodium Citrate
miRCURY LNA miRNA ISH Buffer Set (FFPE) Qiagen 339450 scramble miRNA/U6 snRNA
miRCURY LNA mmu-miR-182 detection probe QIagen YD00615701 5'-DIG and 3'-DIG labelled
Levamisol hydrochloride Sigma Aldrich 31742
Bovine Serum Albumin Sigma Aldrich A9647 BSA
NBT/BCIP Tablets Sigma Aldrich 11697471001 NBT-BCIP
Potassium Chloride ThermoFisher P217 KCl
DAPI solution (1mg/ml) ThermoFisher 62248 DAPI
Glass coverslip ThermoFisher 12-545E Glass coverslip
Plastic coverslip Grace Bio-Labs HS40 22mmX40mmX0.25mm RNA-ase free plastic coverslip
Anti-Digoxigenin-AP, Fab fragments Sigma Aldrich 11093274910 DIG antibody
Hydrophobic barrier pen Vector Laboratories H-4000 Pap pen
Anti-Cardiac Troponin T antibody Abcam ab92546 cTnT antibody
Goat anti-Rabbit IgG (H+L) Cross-Absorbed Secondary Antibody, Alexa Fluor 568 ThermoFisher A-11011 anti-rabbit-568 antibody
Dako Fluorescence Mounting Medium DAKO S3023 mounting medium
Sheep serum Sigma Aldrich S3772
Goat serum Sigma Aldrich G9023
Deionized Formamide American Bioanalytical AB00600
Hybridization Oven ThermoFisher UVP HB-1000 Hybridizer

Referências

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116, 281-297 (2004).
  2. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature. 432, 231-235 (2004).
  3. Hutvagner, G., Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 297, 2056-2060 (2002).
  4. Krol, J., et al. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. Journal of Biological Chemistry. 279, 42230-42239 (2004).
  5. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., Bartel, D. P. Vertebrate microRNA genes. Science. 299, 1540 (2003).
  6. Tian, T., Wang, J., Zhou, X. A review: microRNA detection methods. Organic and Biomolecular Chemistry. 13, 2226-2238 (2015).
  7. Fineberg, S. K., Kosik, K. S., Davidson, B. L. MicroRNAs potentiate neural development. Neuron. 64, 303-309 (2009).
  8. Ivey, K. N., et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell stem cell. 2, 219-229 (2008).
  9. Houbaviy, H. B., Murray, M. F., Sharp, P. A. Embryonic stem cell-specific MicroRNAs. Developmental cell. 5, 351-358 (2003).
  10. Kasper, D. M., et al. MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Developmental cell. 40, 552-565 (2017).
  11. Liu, N., Olson, E. N. MicroRNA regulatory networks in cardiovascular development. Developmental cell. 18, 510-525 (2010).
  12. Xiao, C., Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell. 136, 26-36 (2009).
  13. Hartig, S. M., Hamilton, M. P., Bader, D. A., McGuire, S. E. The miRNA Interactome in Metabolic Homeostasis. Trends in endocrinology and metabolism: TEM. 26, 733-745 (2015).
  14. Ying, W., et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell. 171, 372-384 (2017).
  15. Perkins, D. O., et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome biology. 8, R27 (2007).
  16. Miller, B. H., et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National Academy of Sciences of the United States of America. 109, 3125-3130 (2012).
  17. Xu, B., Hsu, P. K., Stark, K. L., Karayiorgou, M., Gogos, J. A. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell. 152, 262-275 (2013).
  18. Hu, Y., Ehli, E. A., Boomsma, D. I. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism research : official journal of the International Society for Autism Research. 10, 1184-1203 (2017).
  19. Wu, Y. E., Parikshak, N. N., Belgard, T. G., Geschwind, D. H. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nature neuroscience. 19, 1463-1476 (2016).
  20. Ikeda, S., et al. Altered microRNA expression in human heart disease. Physiological genomics. 31, 367-373 (2007).
  21. Mann, M., et al. An NF-kappaB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications. 8, 851 (2017).
  22. O’Connell, R. M., et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 33, 607-619 (2010).
  23. Chan, E., Prado, D. E., Weidhaas, J. B. Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends in Molecular Medicine. 17, 235-243 (2011).
  24. He, L., et al. A microRNA component of the p53 tumour suppressor network. Nature. 447, 1130-1134 (2007).
  25. Kloosterman, W. P., Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Developmental cell. 11, 441-450 (2006).
  26. Li, N., et al. miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart. Science Reports. 6, 21228 (2016).
  27. Meerson, F. Z. Compensatory hyperfunction of the heart and cardiac insufficiency. Circulation Research. 10, 250-258 (1962).
  28. Tardiff, J. C. Cardiac hypertrophy: stressing out the heart. Journal of Clinical Investigation. 116, 1467-1470 (2006).
  29. Burchfield, J. S., Xie, M., Hill, J. A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 128, 388-400 (2013).
  30. Benjamin, E. J., et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 135, e146-e603 (2017).
  31. Pena, J. T., et al. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nature Methods. 6, 139-141 (2009).

Play Video

Citar este artigo
Memi, F., Tirziu, D., Papangeli, I. Tissue-specific miRNA Expression Profiling in Mouse Heart Sections Using In Situ Hybridization. J. Vis. Exp. (139), e57920, doi:10.3791/57920 (2018).

View Video