Один из самых сложных условиях стресса, которые организмов столкнуться во время их жизни предполагает накопление окислителей. Во время окислительного стресса клетки сильно полагаться на молекулярных сопровождающим. Здесь мы представляем методы, используемые для расследования редокс регулируемых анти агрегационной активности, а также мониторирование структурные изменения, регулирующие функции сопровождения, с помощью HDX-МС.
Живые организмы должны регулярно справляться с колебаниями среды в течение их жизненного цикла, включая изменения температуры, рН, накопление реактивнооксигенных видов, и многое другое. Эти колебания могут привести к широко белка разворачивается, агрегации и смерть клетки. Таким образом клетки развивались динамичной и стресс конкретных сеть молекулярной сопровождающих, которые поддерживают «здоровой» протеома в условиях стресса. ATP-независимые сопровождающих представляют собой один из основных класса молекулярной сопровождающих, которые служат в качестве первой линии обороны молекул, защита против агрегации белков в зависимости от стресса. Одна особенность, которую эти сопровождающих имеют в общем является их способность использовать структурные пластичности для их активации стресс конкретных, признание и выпуска смятых клиента.
В этой статье мы ориентируемся на функциональный и структурный анализ одной такой неразрывно неупорядоченных сопровождающий, бактериальных редокс регулируется Hsp33, который защищает белки против агрегации во время окислительного стресса. Здесь мы представляем набор инструментов различных методов для изучения редокс регулируемых сопровождения деятельности, а также для картирования конформационные изменения шаперонов, лежащие в основе его деятельности. В частности, мы описываем процесс, который включает в себя подготовку полностью уменьшается и полностью окисляется белков, следуют анализ сопровождающий анти агрегационной активности в пробирке с помощью светорассеивающего, сосредоточив внимание на степень анти агрегационной активности и его кинетики. Чтобы преодолеть частые промахи, накопленных в ходе статистических анализов, мы описывают использование Kfits, Роман графический инструмент, который позволяет легко обрабатывать кинетическими измерениями. Этот инструмент легко может применяться к другим типам Кинетические измерения для удаления промахов и установка кинетических параметров. Чтобы сопоставить функции с структуры белков, мы описывают установки и процесса структурной масс-спектрометрии техники, водорода дейтерия обмен масс-спектрометрии, что позволяет отображение конформационные изменения на сопровождающий и субстрат в ходе различных этапов деятельности Hsp33. Та же методология может применяться для других взаимодействий протеин протеина и белка лиганд.
Клетки часто сталкиваются накопление реактивнооксигенных видов (ров) производится как побочные продукты дыхания1,2, белков и липидов окисления3,4и дополнительные процессы5, 6,7. Несмотря на РОСИ благотворную роль в различных биологических процессах, таких как сотовые сигнализации8,9 и иммунный ответ10дисбаланс между производством рос и его детоксикации может произойти, ведущих к окислительным подчеркнуть7. Биологической цели ROS являются белки, липиды и нуклеиновые кислоты, окисления, которые влияют на их структуру и функции. Таким образом накопление сотовой окислителей тесно связан с разнообразных патологий, включая рак9,11, воспаление12,13и старения14, 15и были найдены в наступление и прогрессии нейродегенеративных расстройств, таких как Альцгеймера, Паркинсона и ALS болезнь16,17,18.
Недавно синтезированных и зрелые белки очень чувствительны к окислению ввиду потенциально опасные изменения их боковых цепей, которые формируют протеин структуры и функции19,20. Таким образом Оксидативный стресс обычно приводит к инактивации широко белка, сворачиванию и агрегирования, в конечном итоге приводит к смерти клетки. Один из элегантных сотовой стратегии, чтобы справиться с потенциальным ущербом окисление белков является использовать редокс зависимых сопровождающих, которые препятствуют широко белка агрегации, вместо формирования стабильные комплексы с клиента смятых протеинов21 ,,22–23. Эти первой линии обороны сопровождающих быстро активируются по участкам окисления (обычно на остатков цистеина), который преобразует их в мощный анти агрегирование молекул24. Так как Оксидативный стресс приводит в угнетение дыхания и уменьшается в клеточных уровни ATP25, каноническое АТФ зависимые сопровождающих являются менее эффективными при окислительном стрессе условий25,26 ,27. Таким образом, редокс активации АТФ независимые сопровождающих играют жизненно важную роль в поддержании гомеостаза белка после накопления окислителей в бактерий и эукариот (например, Hsp3328 и29 Рида в бактерии, Get330 в peroxiredoxins31 в клетках эукариот: у дрожжей). Деятельность этих сопровождающих сильно зависит от реверсивные конформационные структурных изменений, вызванных участкам окисления, что раскрывает гидрофобные регионы вовлеченных в признании клиента смятых протеинов.
Исследование механизма борьбы с агрегации и принципы, регулирующие признание клиента белков, сопровождающих не легко из-за динамичного и разнообразного характера шаперонов субстрат взаимодействия32,33, 34,35,,3637. Однако, стресс регулируется сопровождающим имеют возможность для продвижения нашего понимания анти статистическую функцию из-за их способность: 1) получить две различные формы сопровождающий, активно (например, окисляется) и неактивных (например, сокращены), с введения или удаления состояния стресса, легко переключаться между ними (например, окислителя и восстановителя), 2) имеют широкий спектр субстратов, 3) образуют весьма стабильные комплексы с клиента белков, которые могут быть оценены различные структурные методологии и 4) сосредоточиться исключительно на признания субстрата и релиз, посредничестве редокс зависимых конформационные изменения, как большинство из этих сопровождающих не хватает складной возможности.
Здесь мы анализируем бактериальных редокс регулируемых сопровождающий Hsp33 в борьбе с агрегационной активности, жизненно важным компонентом системы бактериальной обороны против окисления индуцированного белка агрегации28. При уменьшении Hsp33 это плотно сложенный цинка связывающий белок с без сопровождения деятельности; Однако когда подвергается окислительному стрессу, Hsp33 проходит обширные конформационные изменения, которые предоставляют его субстрат привязки регионов38,39. После окисления иона цинка, который сильно привязан к четыре высоко сохранены хвоща остатков домена C-терминала — выпустила40. Это приводит к образованию двумя дисульфидными облигаций, разворачивается домен C-терминала и дестабилизации соседних компоновщика региона41. C-терминала и компоновщик регионы являются очень гибкими и определяются как частично или внутренне неупорядоченным. По возвращении в не стрессовых условиях которым стало сокращение и шаперонов возвращается в свой родной сложенном состоянии с не анти агрегационной активности. Складывая шаперонов приводит к дальнейшей разворачивается и дестабилизации белка присоединенного клиента, который вызывает его передачи канонической сопровождения системы, DnaK/J, складывая38. Анализ сайтов взаимодействия Hsp33 и предполагает, что Hsp33 использует оба его заряженных неупорядоченных регионов, а также гидрофобные регионов на компоновщик и N-концевой домен для захвата денатурации белков клиента и предотвратить их агрегации38, 42. в сложенном состоянии, эти регионы являются скрытыми сложенном компоновщик и домен C-терминала. Интересно, что компоновщик региона служит привратник Hsp33 в сложенном и неактивные государства, «зондирования» складной статус его рядом C-терминала домен34. Когда дестабилизирована мутагенеза, (либо Точечная мутация или полной последовательности возмущений), Hsp33 преобразуется в конститутивно активных сопровождающий независимо окислительно-восстановительного состояния его редокс чувствительных к которым43.
Здесь представлены протоколы позволяют мониторинг Hsp33 в редокс зависимых сопровождения деятельности, а также картирование конформационные изменения после активации и привязка клиента белков. Эта методология может быть адаптирована для исследования других шаперонов клиент признание моделей, а также не сопровождающий белок белковых взаимодействий. Кроме того мы представляем протоколы для подготовки полностью восстановленного и окисленного сопровождающих, которые могут использоваться в исследованиях других белков редокс переключатель, чтобы выявить потенциальную роль окисление белков на активность белка.
В частности, мы описывают процедуру мониторинга сопровождения деятельности в пробирке и определить его субстратная специфичность под различные типы агрегации белков (химически и термически индуцированной) рассеяния света (LS) измеряется с помощью fluorospectrometer44. В ходе статистической обработки рассеяние света на 360 Нм увеличивается быстро из-за увеличения мутность. Таким образом в зависимости от времени на этой длине волны может контролироваться агрегации. LS — это быстрый и чувствительных метод для тестирования агрегации белков и, таким образом, анти агрегационной активности белка интерес с помощью наномолярных концентрациях, позволяя характеристику белков связанных с агрегации кинетических параметров при различных условий. Кроме того протокол LS, описанный здесь не требуют дорогостоящей аппаратуры и может быть легко устанавливается в любой лаборатории.
Тем не менее это довольно сложной задачей для получения «чистой» кинетических кривых и получения белка кинетических параметров от таких светорассеянию эксперименты, из-за шума и большое количество промахов, порожденных пузырьки воздуха и крупных агрегатов. Чтобы преодолеть это препятствие, мы представляем новый графический инструмент, Kfits45, используется для снижения уровня шума в разных Кинетические измерения, специально приспособлены для белка агрегации кинетических данных. Это программное обеспечение обеспечивает предварительные кинетические параметры для ранней оценки результатов и позволяет пользователю «чистых» больших объемов данных быстро не затрагивая его кинетические свойства. Kfits , реализованных в Python и доступны в открытым исходным кодом на 45.
Один из сложных вопросов в области относится сопоставление сайтов взаимодействия между их клиент белков и сопровождающих и понимания, как сопровождающим признать широкий спектр смятых субстратов. Этот вопрос далее осложняется, когда изучение высокодинамичные белковых комплексов, которые неразрывно связаны неупорядоченных сопровождающих и подверженных агрегации субстратов. К счастью структурные масс-спектрометрии значительно продвинулась в течение последнего десятилетия и успешно оказывает полезные подходы и инструменты для анализа структурных пластичности и карта остатков занимающихся белка признание46, 47 , 48 , 49. здесь, мы представляем один такой техники водород дейтерий обмен масс-спектрометрии (HDX-МС)-которая позволяет отображение остаточного уровня изменения в структурной конформации белка модификации или белка/лигандом привязки35, 50,51,52,53,54,55. HDX-MS использует непрерывного обмена водороды позвоночника от дейтерия, уровень которой зависит от химической среды, доступность, и ковалентных и ковалентные связи56. HDX-MS отслеживает эти обменные процессы, с помощью транс растворителя, часто тяжелой воды (D2O) и позволяет измерения, основанные на изменении молекулярной массой после водорода дейтерия обмена. Замедление темпов обмена водорода дейтерия может привести от водороды участвующих в водородных связей или, просто, от их пространственной помех, который показывает локальных изменений в структуре57. Изменения на Связывание лиганда или столб-поступательные изменения также могут привести к различия в среде водорода с помощью привязки, что привело к различиям в водорода дейтерия обмен (HDX) ставки46,53.
Мы применили эту технологию к 1) карта Hsp33 регионов, которые быстро разворачиваться после окисления, приводит к активации Hsp33 и 2) определить потенциальные привязки интерфейс Hsp33 с его полнометражный смятых субстрата, цитрат синтазы (CS)38.
Методы, описанные в этой рукописи могут применяться к исследованию редокс зависимые функции белков в пробирке, определение анти агрегационной активности и роль структурных изменений (если таковые имеются) в функции протеина. Эти методики могут быть легко адаптированы различных биологических систем и применяется в лабораторных условиях.
В этой статье мы предоставили протоколы для анализа деятельности сопровождающий редокс зависимых и характеристика структурных изменений после привязки клиента белка. Они являются взаимодополняющими методологии для определения потенциальных шаперонов субстрат комплексов и анализи…
The authors have nothing to disclose.
Авторы благодарны Meytal Радзински за ее полезные обсуждения и критических чтении этой статьи и Патрик Гриффин и членов его лаборатории для их неограниченной помощи при установлении HDX анализ платформы. Авторы благодарны немецко-Израиль фонд (I-2332-1149.9/2012), двусторонней научный фонд (2015056), Мари Кюри интеграции Грант (618806), научный фонд Израиля (1765/13 и 2629/16) и человека пограничной науки Программа (CDA00064/2014) за их финансовую поддержку.
Chemicals, Reagents | |||
Acetonitrile HPLC plus | Sigma Aldrich | 34998-2.5L | solvent |
Formic acid Optima LC/MS | Fisher Chemicals | A117-50 | solvent supplement |
Isopropyl alcohol, HPLC grade | Fisher Chemicals | P750717 | solvent |
Methanol | Fisher Chemicals | A456-212 | solvent |
Tris(hydroxymethyl)aminomethane | Sigma Aldrich | 252859 | buffer |
Trifluoroacetic acid | Sigma Aldrich | 76-05-1 | solvent |
Water for HPLC | Sigma Aldrich | 270733-2.5L-M | solvent |
ZnCl2, Zinc Chloride | Merck | B0755416 308 | reagent |
DTT | goldbio | 27565-41-9 | reducing agent |
PD mini trap G-25 columns GE healthcare | GE healthcare | 29-9180-07 | desalting column |
Potassium Phosphate | United states Biochemical Corporation | 20274 | buffer |
Hydrogen peroxide 30% | Merck | K46809910526 | oxidizing agent |
citrate synthase | sigma aldrich | C3260 | substrate |
HEPES acid free | sigma aldrich | 7365-45-9 | buffer |
Gndcl | sigma aldrich | G3272-500G | denaturant |
Deuterium Chloride Solution | sigma aldrich | 543047-10G | buffer |
Deuterium Oxide 99% | sigma aldrich | 151882-100G | solvent |
TCEP | bioworld | 42000058-2 | reducing agent |
150uL Micro-Insert with Mandrel Interior & Polymer Feet, 29*5mm | La-Pha-Pack -Thermo Fischer Scientific | ||
1.5mL Clear Short Thread Vial 9mm Thread, 11.6*32mm | La-Pha-Pack -Thermo Fischer Scientific | ||
quartz cuvette | Hellma 101-QS | ||
Instruments | |||
Jasco FP-8500 Fluorospectrometer | Jasco | ||
Thermomixer Comfort | Eppendorf | 13058/0 | |
Heraeus Megafuge 16R, bench topCentrifuge | Thermo Scientific | ||
pH meter , PB-11 sartorius | Sartorius | 13119/0 | |
AffiPro Immobilized Pepsin column (20mm length, 2.0mm diameter). | AffiPro | ||
Waters Pre-column (ACQUITY UPLC BEH C18 VanGuard 130 Å, 1.7um, 2.1mmx5mm) | Waters | ||
C18 analytical column (ACQUITY UPLC Peptide BEH c18 Column, 130 Å, 1.7um, 2.1mmx50mm) | |||
Vinyl Anaerobic chamber with Airlock door | COY | ||
Q-exactive-orbitrap mass spectrometer | Thermo-Fischer Scientific | ||
PAL system LHX – robotic system for handling HDX samples | PAL system | https://www.palsystem.com/index.php?id=840 | |
Dionex Ultimate 3000, XRS pump | Thermo Scientific | ||
Dionex AXP-MS auxiliary pump | Thermo Scientific | ||
Software, Software Tools, Database search | |||
Kfits: Fit aggregation Data | http://kfits.reichmannlab.com/fitter/ | ||
Thermo Scientific Xcalibur software | https://www.thermofisher.com/order/catalog/product/OPTON-30487 | ||
Q Exactive MS Series Tune Interface (Tune) | https://tools.thermofisher.com/content/sfs/brochures/WS-MS-Q-Exactive-Calibration-Maintenance-iQuan2016-EN.pdf | ||
Chronos software (Axel Semrau) | http://www.axel-semrau.de/en/Software/Software+Solutions/Chronos-p-966.html | ||
Proteome Discoverer V1.4 software | https://www.thermofisher.com/order/catalog/product/OPTON-30795 | ||
HDX workbench software | http://hdx.florida.scripps.edu/hdx_workbench/Home.html |