Aqui, apresentamos dois protocolos para estudar interações do fagócito –Mycobacterium abscessus : a triagem de uma biblioteca de transposon mutant para deficiência intracellular bacteriana e a determinação de bactérias intracelular transcriptoma do RNA sequenciamento. Ambas as abordagens fornecem insights sobre as vantagens genômicas e adaptações de transcriptomic melhorar a aptidão de bactérias intracelulares.
O que diferencia outras micobactérias saprófitas Mycobacterium abscessus é a capacidade de resistir a fagocitose por macrófagos humanos e a capacidade de se multiplicar no interior dessas células. Essas características de virulência processam M. abscessus patogênicos, especialmente em hosts vulneráveis com doença pulmonar estrutural subjacente, como fibrose cística, Bronquiectasia ou tuberculose. Como a doentes infectados com M. abscessus permanece obscuro. Ao contrário de muitos micobactérias, M. abscessus não é encontrado no ambiente, mas pode residir dentro as amebas, fagócitos ambientais que representam um potencial reservatório para M. abscessus. Com efeito, M. abscessus é resistente à fagocitose amoebal e a vida intra-ameba parece aumentar a virulência do M. abscessus em um modelo experimental de infecção. No entanto, pouco é conhecido sobre a virulência do M. abscessus em si. Para decifrar os genes que conferem uma vantagem para M. abscessus vida intracelular, uma triagem de uma biblioteca de mutante de transposon M. abscessus foi desenvolvida. Em paralelo, foi desenvolvido um método de extração de RNA de micobactérias intracelulares após co-cultura com amebas. Este método foi validado e permitiu o sequenciamento de todo M. abscessus transcriptomes no interior das células; fornecimento, pela primeira vez, uma visão global para M. abscessus adaptação à vida intracelular. Ambas as abordagens dão-em uma visão M. abscessus fatores de virulência que permitem a M. abscessus colonizar as vias aéreas em seres humanos.
O gênero Mycobacterium inclui espécies que variam de organismos saprófitas inofensivos a principais patógenos humanos. Espécies patogénicas well-known tais como Mycobacterium tuberculosis, Mycobacterium marinum e Mycobacterium ulcerans pertencem ao subgrupo de crescimento lento micobactérias (SGM). Em contraste, o subgrupo de rápido crescimento micobactérias (RGM) caracteriza-se pela sua capacidade de formar colônias visíveis em menos de 7 dias em ágar-ágar. O grupo RGM abrange mais de 180 espécies, principalmente de não-patogênicas micobactérias saprófitas. Estudos sobre RGM as interações com seus hospedeiros principalmente focado na Mycobacterium smegmatis e demonstram que estas micobactérias são rapidamente eliminadas pela ação bactericida dos macrófagos.
Mycobacterium abscessus é um do RGM rara que são patogénicas para os seres humanos e é responsável por uma vasta gama de infecções, que variam de pele e infecções de tecidos moles para as infecções pulmonares e disseminadas. M. abscessus é considerado, juntamente com Mycobacterium avium, o principal patógeno micobacteriana em pacientes de fibrose cística1.
Vários estudos realizados na M. abscessus indicam que este mycobacterium se comporta como um patógeno intracelular, capaz de sobreviver a resposta bactericida de macrófagos e fibroblastos nos pulmões e pele, o que não é normalmente observada em RGM 2 , 3 , 4. análise do genoma de M. abscessus identificou vias metabólicas, tipicamente encontradas em microrganismos ambientais em contacto com o solo, plantas e ambientes aquáticos, onde livre amebas são frequentemente presentes5. Eles também têm demonstrado que M. abscessus é dotado de vários genes de virulência não encontrados no RGM não-patogênicas e Saprófita, provavelmente adquirida pela transferência horizontal de genes em um nicho favorável a troca genética que pode reunir várias bactérias resistentes a ameba.
Experimentalmente, um dos primeiros resultados marcantes foi a observação de crescimento intracelular de M. abscessus em macrófagos, bem como para M. tuberculosis6. M. abscessus também resiste a acidificação do fagossoma, apoptose e autofagia, três mecanismos essenciais da resistência à infecção2celular. Ainda mostrou que a M. abscessus é capaz de estabelecer uma comunicação imediata entre o fagossoma e o citoplasma, um ambiente mais rico em nutrientes que pode favorecer a multiplicação bacteriana2. Muito pouco é conhecido sobre as vantagens de genômicas que M. abscessus possui ou adquiriu para permitir a sobrevivência em um ambiente intracelular. Coculture ameba é um método eficiente que permitiu o isolamento de muitas novas bactérias resistentes a ameba como Mycobacterium massiliense7,8. A capacidade de se multiplicar dentro de amebas observou-se, em um modelo de clorofórmio de M. abscessus em ratos, que pode conferir uma maior virulência de M. abscessus4. Uma hipótese é que a M. abscessus desenvolveram características genéticas encontradas dentro deste ambiente para sobreviver nas células fagocíticas, que são diferentes das outra RGM não patogénicas. Essas aquisições podem favorecer a capacidade de se espalhar e sua virulência no hospedeiro humano.
Este relatório descreve ferramentas e métodos para destacar as vantagens de genômicas conferidas para M. abscessus para sobreviver no ambiente de amebas. Para este efeito, a seleção de mutantes de transposon M. abscessus é descrita pela primeira vez, na estirpe do tipo a Acanthamoeba castellanii , que permite a identificação de defeituoso do mutante para crescimento intracelular. Uma segunda triagem em macrófagos também é relatada, para confirmar se esse defeito persiste no hospedeiro humano. Em segundo lugar, para entender que mecanismos são aproveitados em M. abscessus se adaptar à vida em fagocíticas células e aumentar sua virulência no animal de acolhimento, um método especificamente adaptado para M. abscessus foi desenvolveram, depois da co-cultura na presença de amebas que permitiu a extração de RNA total de bactérias intra-amoebal. Como consequência, uma visão abrangente de M. abscessus genes que são necessários para uma vida intracelular foi desenvolvida.
O comportamento de M. abscessus é muito mais semelhante ao comportamento da SGM patogénico, tais como M. tuberculosis do que qualquer outras micobactérias pertencentes a RGM2. O elemento chave na patogenicidade de SGM é sua capacidade de sobreviver ou até mesmo se multiplicam dentro de células apresentadoras de antígeno, tais como macrófagos e células dendríticas.
M. abscessus adquiriu certas vantagens genômicas como mostrado pela s…
Reconhecemos grandemente PR. E.J. Rubin (Harvard Medical School, Boston, EUA) para o dom precioso do mutante biblioteca e o Dr. Ben Marshall (Faculdade de medicina, Universidade de Southampton, Reino Unido) para as correções do manuscrito. Muito reconhecemos associação francesa do paciente para fibrose cística “Vaincre la Mucoviscidose” e “L’Association Gregory Lemarchal” pelo apoio financeiro (RF20150501377). Agradecemos também a Agência Nacional para a investigação (programa ANR DIMIVYR (ANR-13-BSV3-0007-01)) e a modernização de Région (Domaine d’Intérêt Majeur Maladies Infectieuses et Emergentes) para o financiamento a postdoctoral fellowship para V.I.C.T.I.M.S.W.V.-M. L. L. é um colega de doutorado do “Ministère de L’Enseignement Supérieur et de la Recherche”.
Name of Material/ Equipment | |||
24-well plates | Thermofisher | 11874235 | |
96-well plates | Thermofisher | 10687551 | |
Beadbeater | Bertin | Precellys 24 | |
Bioanalyzer | Agilent | ||
Genepulser Xcell | Biorad | ||
Nanodrop spectrophotometer 2000 | Thermofisher | ||
QuBit fluorometer | Thermofisher | Q33226 | |
zirconium beads/silica beads | Biospec products | 11079101Z | Beads |
Name of reagent/cells | |||
Acanthamoeba castellanii | ATCC | 30010 | strain |
Amikacin | Mylan | 150927-A | powder |
B-mercaptoethanol | Sigma-Aldrich | M6250 | solution |
CaCl2 | Sigma-Aldrich | C1016 | >93% granular anhydrous |
Chloroform | Fluka | 25666 | solution |
ClaI enzyme | New England Biolabs | R0197S | enzyme |
Columbia agar | Biomerieux | 43041 | 90 mm |
D-Glucose | Sigma-Aldrich | G8270 | powder |
DMEM | Thermofisher | 11500596 | medium |
DNase and RNase free water | Invitrogen | 10977-035 | solution |
E. coli electrocompetent | Thermofisher | 18265017 | bacteria |
EDTA | Sigma-Aldrich | E4884 | powder |
Escherichia coli | Clinical isolate | personal stock | bacteria |
Fe(NH4)2(SO4)-6H20 | EMS | 15505-40 | sulfate solution 4% aqueous |
Fetal Calf Serum | Gibco | 10270 | serum |
Glycerol | Sigma-Aldrich | G5516 | solution |
Guanidium thiocyanate | Euromedex | EU0046-D | powder |
Isopropanol | Sigma-Aldrich | I9516 | solution |
J774.2 macrophages | Sigma-Aldrich | J774.2 | Strain |
kanamycin | Sigma-Aldrich | 60615 | powder |
KH2PO4 | Sigma-Aldrich | P0662 | Monobasic, anhydrous |
LB liquid medium | Invitrogen | 12795-027 | powder |
Lysozyme | Roche | 10837059001 | powder |
MgSO4 | Labosi | M275 | pur |
Microbank TM (cryotubes with beads) | Pro-Lab Diagnostic | PL.170/M | |
Middlebrook 7H11 medium | Sigma-Aldrich | M0428 | powder |
Middlebrook 7H9 medium | Thermofisher | 11753473 | powder |
Müller-Hinton agar | Biorad | 3563901 | powder |
N-Lauryl-sarcosine | Merck | S37700 416 | powder |
Na2HPO4-7H2O | Sigma-Aldrich | S9390 | 98-102% |
Phenol/chloroforme | Sigma-Aldrich | 77617 | solution |
Proteinase K | Thermofisher | EO0491 | powder |
proteose peptone | BD | 211684 | enzymatic digest of animal tissue |
pUC19 plasmid | New England Biolabs | 54357 | plasmid |
SDS 20% | Biorad | 1610418 | solution |
Sodium citrate | Calbiochem | 567446 | powder |
Thiourea | Sigma-Aldrich | 88810 | powder |
Tris | Sigma-Aldrich | 154563 | powder |
Trizol | Thermofisher | 12044977 | solution |
Tween 80 | Sigma-Aldrich | P1754 | solution |
Yeast extract | BD | 212750 | |
Kit | |||
AMBION DNase kit | Thermofisher | 10792877 | kit |
DNA Agilent Chip | Agilent | 5067-1504 | kit |
GeneJET Plasmid Miniprep kit | Thermofisher | K0503 | kit |
PureLink PCR Purification kit | Invitrogen | K310001 | kit |
Quant-It" assays kit | Thermofisher | Q33140/Q32884 | kit |
T4 DNA ligase | Invitrogen | Y90001 | kit |
TruSeq Stranded RNA LT prep kit | Illumina | 15032611 | kit |