Here, we present protocols to visualize calcium (Ca2+) responses elicited by HeLa cells infected by Shigella. By optimizing the parameters of bacterial infection and imaging with Ca2+ fluorescent probes, atypical global and local Ca2+ signals induced by bacteria over a large range of infection kinetics are characterized.
Ca2+ is a ubiquitous ion involved in all known cellular processes. While global Ca2+ responses may affect cell fate, local variations in free Ca2+ cytosolic concentrations, linked to release from internal stores or an influx through plasma membrane channels, regulate cortical cell processes. Pathogens that adhere to or invade host cells trigger a reorganization of the actin cytoskeleton underlying the host plasma membrane, which likely affects both global and local Ca2+ signaling. Because these events may occur at low frequencies in a pseudo-stochastic manner over extended kinetics, the analysis of Ca2+ signals induced by pathogens raises major technical challenges that need to be addressed.
Here, we report protocols for the detection of global and local Ca2+ signals upon a Shigella infection of epithelial cells. In these protocols, artefacts linked to a prolonged exposure and photodamage associated with the excitation of Ca2+ fluorescent probes are troubleshot by stringently controlling the acquisition parameters over defined time periods during a Shigella invasion. Procedures are implemented to rigorously analyze the amplitude and frequency of global cytosolic Ca2+ signals during extended infection kinetics using the chemical probe Fluo-4.
Ca2+ regulates all known cell processes, including cytoskeletal reorganization, inflammatory responses, and cell death pathways related to host-pathogen interactions1,2,3. Under physiological conditions, basal cytosolic Ca2+ concentrations are low, in the hundreds of nM range, but can be subjected to transient increases upon agonist stimulation. These variations often show oscillatory behavior through the action of pumps and channels at the plasma and endoplasmic reticulum membranes. The pattern of these oscillations is characterized by the period, duration, and amplitude of Ca2+ increases, and is decrypted by cells which, in turn, trigger specific responses in what is known as the Ca2+ code4,5. A sustained increase in the cytosolic Ca2+ concentration under pathological conditions may lead to cell death associated with the permeabilization of mitochondrial membranes and the release of pro-apoptotic or necrotic factors6,7.
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by injecting effectors into host cells using a type III secretion system (T3SS)8,9. A Shigella invasion of host cells is associated with local and global Ca2+ signals elicited by the T3SS. As for pore-forming toxins, the T3SS translocon that inserts into host cell membranes and is required for the injection of T3SS effectors is likely responsible for the activation of PLC and the inositol (1, 4, 5) trisphosphate (InsP3)-dependent Ca2+ release. The combination of the localized PLC stimulation and the accumulation of polymerized actin at sites of a Shigella invasion result in an atypically long-lasting InsP3-dependent Ca2+ release10. The type III effector IpgD, a phosphatidyl 4,5 bisphosphate (PIP2)-4-phosphatase, limits the local amount of PIP2, thereby controlling the quantity of available substrate for PLC to generate InsP3, which contributes to the confinement of local Ca2+ responses at bacterial invasion sites11,12. These local Ca2+ responses likely contribute to the actin polymerization at Shigella invasion sites10. Global Ca2+ responses that are also elicited by Shigella, however, are dispensable for the bacterial invasion process but trigger the opening of connexin hemichannels at the plasma membrane and the release of ATP in the extracellular compartment. Released ATP acting in a paracrine manner, in turn, stimulates Ca2+ oscillatory responses in cells next to the infected cell. IpgD is also responsible for shaping global Ca2+ responses into erratic isolated responses with slow dynamics. Eventually, upon a prolonged bacterial infection, IpgD leads to the inhibition of InsP3-mediated Ca2+ signals. Through its interference with Ca2+ signaling, IpgD delays a Ca2+-dependent calpain activation leading to the disassembly of focal adhesion structures and the premature detachment of infected cells13.
While Ca2+ signals are involved in critical aspects of pathogenesis, the use of a microorganism raises a number of technical challenges that are not encountered in classical agonist studies. The protocols described here use the commonly used fluorescent Ca2+ chemical indicator Fluo-4 that we engineered to characterize local Ca2+ signals during a Shigella infection. Steps critical for the detection of these signals are discussed, as well as procedures implemented for their quantitative analysis that is required to characterize the role of bacterial effectors in Ca2+ signaling.
1. Preparations
2. Infection and Image Acquisition of Local Ca2+ Responses
3. Analysis
Shigella invasion is associated with atypical long-lasting local Ca2+ responses:
Following the protocol mentioned above, Fluo-4-loaded HeLa cells were challenged with WT Shigella and stream acquisitions were performed to analyze Ca2+ signals. A representative experiment is shown in Figure 1, with time-lapse images series of the fluorescence intensity of the Fluo-4 probe averaged in a region of interest for a single cell, and the corresponding phase contrast image (Figure 1A, left panel). The Shigella invasion site is characterized by membrane ruffles detected in the phase contrast image (Figure 1A, arrow). Atypical local increases in free cytosolic Ca2+ are observed at the Shigella invasion site with a varying amplitude and durations ranging from 2.5 – 5 s (Figures 1A and 1B, arrows), followed by global increases in the infected cell (Figure 1B, arrowheads).
The type III effector IpgD regulates the transition from local to global Ca2+ responses induced by Shigella in HeLa cells:
The analysis of Ca2+ signals induced by wild-type Shigella and an isogenic mutant strain deficient for the type III effector IpgD, a phosphatidyl 4, 5 bisphosphate phosphatase, indicated that this latter strain induced more global and less atypical local responses with long durations (RATPs) with 11.3 ± 4.4 (SEM)% and 40.3 ± 7.5 (SEM)% of cells responsive with global responses in the case of a WT and ipgD mutant, respectively (Figure 1D)15. This ipgD mutant obtains local responses at a similar frequency as the WT strain.
Shigella inhibit InsP3-dependent global Ca2+ increases in HeLa cells during prolonged infection kinetics:
The imaging of global Ca2+ responses over extended infection kinetics pointed to a decrease in the frequency of responses 30 min following the challenge with wild-type Shigella (Figure 2A). A similar decrease in the frequency of Ca2+ responses was observed in TC-7 cells infected for 30 min with wild-type Shigella15. The quantification of dose-dependent cell responses to the Ca2+ agonist histamine illustrates the inhibition of an InsP3-dependent Ca2+ release at late stages of a Shigella infection. WT Shigella leads to atypical isolated Ca2+ responses during the first 30 min of the infection and after further incubation, a drastic decrease in the amplitude and frequency of Ca2+ responses was observed (Figure 2B).
Figure 1. Local and global Ca2+ responses during Shigella invasion. HeLa cells were loaded with Fluo-4-AM and challenged with WT Shigella. (A) The left panel shows phase-contrast images. The right panel shows time series of Fluo-4 fluorescence average intensity with the color code depicted on the right. The time from the start of acquisition is indicated in seconds, 10 min after the bacterial challenge. The arrow indicates the invasion foci. The circles depicted correspond to the regions analyzed in (B) where the traces with the corresponding color represent the variations in Fluo-4 average fluorescence intensity over the baseline. The arrows indicate local responses. The arrowheads indicate global responses. (C) This is a scheme depicting the determination of the duration of the Ca2+ responses. The horizontal dotted line indicates the basal Ca2+ levels (F0); the vertical bars indicate background variations. The vertical dotted line indicates the maximal amplitude of the response; the horizontal bars indicate the duration of the response determined at the half-maximal amplitude. (D) This is the percentage of responsive cells ± SEM showing local responses and global Ca2+ responses induced 5 min post-infection with the WT Shigella (dark gray bars) or the ipgD mutant (light gray bars). RATPs are local Ca2+ responses that last for more than 5 s. N = 4; >60 cells for each time. Wilcoxon test, *P <0.05; **P <0.01. Please click here to view a larger version of this figure.
Figure 2. Inhibition of global Ca2+ responses during extended kinetics of Shigella infection. (A) The upper blue arrows represent the time scale of the bacterial and histamine challenge at the indicated concentrations. This panel shows the representative traces of single cell global Ca2+ variations following the infection by the WT Shigella (green) and ipgD mutant strain (orange). (B) This panel shows the percentage of the amplitude of Ca2+ responses relative to the maximal response, upon a stimulation at 0.5 μM histamine of the cells infected with the indicated strains for 90 min. The solid horizontal bar represents the average maximal percentage. Wilcoxon test, **P <0.01. Please click here to view a larger version of this figure.
This manuscript describes the protocol that we engineered to follow local Ca2+ signals during the relatively short kinetics of a Shigella invasion, as well as global Ca2+ responses during the extended kinetics of Shigella. Below, key issues can be found that need to be addressed to optimize the detection of Ca2+ signals while minimizing any interference with the biological processes.
Chemical vs. genetically encoded Ca2+ probes:
To image local Ca2+ variations, we used the Fluo-4 chemical probe because of its high quantum yield and its fast response dynamics. The speed required for the acquisition also precludes the use of ratiometric probes, since a dual wavelength acquisition cannot be performed. The use of pathogenic microorganisms, however, may interfere with standard procedures using Ca2+ chemical probes. For example, a prolonged cell infection over 60 min by Shigella prevents any cell loading with chemical probes, presumably because of pathogen-induced alterations of the host cell plasma membranes. Consistently, a decrease of cell-associated Fluo-4 fluorescence is observed during long infection kinetics, due to the cytoplasmic loss of this probe. Hence, implementing a control such as the addition of ionomycin to determine the fluorescence at the maximal Ca2+ concentrations at the end of the acquisitions is critical to identify the responsive cells. Also, polarized intestinal epithelial cells relevant for a pathogen infection appear to be refractory to a loading of the Ca2+ probe and require specific loading procedures. While the use of a genetically encoded Ca2+ reporter (GECR) may help to resolve some of these issues, it also introduces other challenges. The transfection efficiency in host cell systems may represent a serious limitation, particularly if it superimposes with a poor infectious yield. Furthermore, the characteristics of a responsiveness to Ca2+ variations of most GECRs are not compatible with the fast kinetics required for local Ca2+ analysis. Finally, the expression of the GECR may interfere with pathogens-mediated processes. We will not discuss the use of GECR for the study of Ca2+ signaling during a host-pathogen interaction. The recent and on-going engineering of various "fast-responding" GECR would probably deserve researchers to revisit their use in future studies.
Timing acquisition of local Ca2+ responses during bacterial infection:
The imaging of local Ca2+ responses requires a high speed of image acquisition implicating a sustained fluorescence excitation of the Fluo-4 probe. Because of the photodamage linked to the high-frequency acquisition, it is critical that the intensity of the fluorophore excitation light is kept to the minimum required to obtain a sufficient signal-to-noise ratio with an exposure time not exceeding 30 ms. We had good results using a LED system at 5% of its maximal intensity, combined with a 1.0 optical density filter with the acquisition set-up as described in step 2.1.4. Even under these conditions, however, we found that the continuous illumination required for the stream mode acquisition did not allow for an acquisition period over 2 min. A stronger illumination or acquisitions period exceeding this limit may result in non-specific global Ca2+ responses and/or in the inhibition of the bacterial invasion processes, presumably linked to photodamage. While the imaging of local Ca2+ responses over longer kinetics may be possible with more sensitive detection means, at present state such imaging can only be performed over a limited time fraction of the 15 min Shigella invasion process. To cover the whole process, we performed successive series of 2-min streaming acquisitions. This time interval is sufficient to follow initial local and global Ca2+ responses at the onset of the infection process and to establish significant differences in the Shigella wild-type strain and its isogenic ipgD mutant16. The development of a highly sensitive camera may permit researchers to further reduce the intensity of the fluorophore illumination and perform local Ca2+ imaging over extended periods, thus improving the time resolution of more transient Ca2+ signals.
Spatial correlation between local Ca2+ responses and bacterial invasion sites:
Because of the local aspect of signaling events induced by microorganisms, it is important to study local Ca2+ signals with respect to their association with sites of the pathogen-host cell interactions. This raised two types of considerations. First, all cells may not be infected, and all microorganisms may not trigger signaling. For Shigella, only a minority of bacteria trigger an invasion, and all cells may not be infected. In our experiments, the MOI was adjusted so that one cell forms a 0.7 – 1 focus of the bacterial invasion. Higher numbers of foci/cell may lead to a possible interference for the analysis of individual invasion events and, conversely, lower numbers may render the analysis too complex, in particular when studying transiently transfected cells. We found that the transfection efficiency needs to reach at least 30% of the cells to bring down the number of replicate experiments to manageable numbers. Second, Shigella invasion sites can be readily detected by phase contrast microscopy. For other processes, other fluorescence-based detection methods could be used. An important aspect, however, is that in most experimental set-ups, the acquisition stream required for local Ca2+ imaging precludes other types of acquisition during the period. This implicates that the process analyzed should not show significant motion during this stream to permit their spatial correlation with local Ca2+ signals. While this is the case for Shigella invasion events that localize to the same cell area over several minutes, highly motile processes may not be manageable or would probably require shorter acquisition streams.
Scoring and analysis of local Ca2+ responses:
While global Ca2+ responses are easily detected, the detection of local Ca2+ responses of small amplitude and duration requires the optimization of the acquisition of fluorescent signals described above. It is also important that strict criteria are applied to differentiate the signals above the background variations. As a rule, we score as a Ca2+ signal an increase of the average Fluo-4 fluorescence intensity that reaches at least 3x the baseline variations in three consecutive 30 ms acquisitions. This response is considered as local if another region of the cell showing the same average fluorescence intensity does not show such an increase. The scoring of local Ca2+ responses in various samples should not cause major difficulties if these rules are systematically applied. In our hands, the low frequency of local Ca2+ signals associated with the bacterial invasion and ranging from 5 – 20% of the cell analyzed represented a major hurdle. Beyond the biological variations detailed in the previous paragraph, the fact that only a stream corresponding to a fraction of the analyzed invasion process also contributes to this low frequency. Because of this low frequency, establishing differences between samples may implicate performing a power test on pilot experiments to estimate the sample size to reach a statistical significance.
Future applications:
We believe that the protocols worked out to analyze local Ca2+ signals during a Shigella invasion will be helpful to image local Ca2+ responses for all processes that remain spatially confined during the acquisition period. While Ca2+ signaling is versatile, local Ca2+ signaling may be most relevant for processes occurring at the plasma or intracellular membranes where the initial point sources of signals reside. Thus, during microbial-host cell interactions, local Ca2+ signals may be relevant to adhesive or invasive processes at the plasma membrane or occurring at intracellular membranes of pathogen-containing vacuoles. On the other hand, the protocols that we designed to analyze global Ca2+ signals over extended infection kinetics may be relevant to processes affecting the general cell physiology during an infection, such as the regulation of a transcriptional program or cell death pathways by pathogens.
The authors have nothing to disclose.
We thank Jenny-Lee Thomassin for her help in editing the manuscript. The work was supported by the ANR grants MITOPATHO and PATHIMMUN, grants from the Labex Memolife and PSL IDEX Shigaforce. Chunhui Sun is a recipient of a Ph.D. grant from the China Scholarship Council. Laurent Combettes and Guy Tran Van Nhieu are recipients of a WBI-France exchange Tournesol program N°31268YG (Wallonie-Bruxelles International, Fonds de la Recherche Scientifique, Ministère Français des Affaires étrangères et européennes, Ministère de l'Enseignement supérieur et de la Recherche dans le cadre des Partenariats Hubert Curien).
Fluo-4 AM | Invitrogen | F14201 | |
Metamorph version 7.7 | Universal Imaging | ||
CoolLED illumination system pE-2 | Roper Scientific | ||
micro-dish 35 mm, high | IBIDI | 81156 | |
Trypticase Soy (TCS) broth | Thermofisher | B11768 | |
TCS agar | Thermofisher | B11043 | |
Congo red | Sigma-Aldrich | 75768 | |
M90T-AfaE | Sun et al. 2017 | Shigella flexneri serotype V. expressing the AfaE adhesin | |
ipgD-AfaE | Sun et al. 2017 | isogenic ipgD mutant strain expressing the AfaE adhesin |