L’objectif global de la technique de profilage polysome est analyse de l’activité traductionnelle de différents mRNAs ou transcriptome ARNm au cours de la synthèse des protéines. La méthode est importante pour les études de règlement de la synthèse de protéine, l’activation de la traduction et répression en santé et les maladies humaines multiples.
Expression de la protéine appropriée au bon moment et dans les bonnes quantités est la base de la fonction des cellules normales et de survie dans un environnement en évolution rapide. Pendant longtemps, les études d’expression de gène étaient dominées par la recherche au niveau transcriptionnel. Cependant, les niveaux d’équilibre des ARNm ne concordent pas bien avec la production de protéines et la traductibilité du mRNA varie grandement selon les conditions. Chez certains organismes, comme le parasite Leishmania, l’expression de la protéine est réglementée principalement au niveau traductionnel. Des études récentes ont démontré que le dérèglement de cette protéine traduction est associé avec le cancer, métabolique, neurodégénératives et autres maladies humaines. Polysome profilage est une méthode puissante pour étudier la régulation traduction protéique. Il permet de mesurer l’État translationnelle des ARNm individuels ou examiner la traduction sur une échelle de tout le génome. La base de cette technique est la séparation des polysomes, ribosomes, leurs sous-unités et l’ARNm libre lors de la centrifugation d’un cytoplasme lysat par un gradient de saccharose. Nous présentons ici un polysome universel profilage protocole utilisé sur trois modèles différents – parasite Leishmania majeur, des cellules humaines cultivées et tissus d’origine animales. Leishmania cellules poussent librement en suspension et des cellules humaines cultivées croissent en monocouche adhérente, tandis que des testicules de souris représentent un échantillon de tissus d’origine animale. Ainsi, la technique est adaptée à l’ensemble de ces sources. Le protocole pour l’analyse des fractions polysomique permet la détection des ARNm individuels par RT-qPCR, protéines par Western blot et l’analyse des ARN ribosomiques par électrophorèse. La méthode peut être étendue par examen des mRNAs association avec le ribosome au niveau du transcriptome par profonde RNA-seq et analyse des protéines associées aux ribosomes par spectrométrie de masse des fractions. La méthode peut être facilement ajustée aux autres modèles biologiques.
Régulation de l’expression de gène dans les cellules est contrôlée par des mécanismes transcriptionnels, post-transcriptionnel et post-traductionnelle. Les progrès dans le séquençage en profondeur RNA permettent l’étude des niveaux d’ARNm stationnaire sur une échelle de tout le génome à un niveau sans précédent. Cependant, les découvertes récentes ont révélé que d’ARNm stationnaire n’est pas toujours corrélée avec la production de protéine1,2. Le sort d’un relevé de notes individuel est très complex et dépend de nombreux facteurs comme des stimuli internes/externes, stress, etc.. Régulation de l’expression génique au cours de la synthèse des protéines fournit une autre couche de contrôle d’expression nécessaire pour une réponse rapide dans des conditions changeantes. Polysome (ou « polyribosomique »), le profilage, la séparation et la visualisation de traduire activement des ribosomes, est une méthode puissante pour étudier la régulation de la synthèse protéique. Bien que, ses premières applications expérimentales est apparu dans les années 19603, polysome profilage est actuellement une des techniques plus importants en protéines translation studies4. Seul ARNm peut se traduire par plus d’un ribosome conduisant à la formation d’un polysome. Relevés de notes peuvent être calés sur les ribosomes avec cycloheximide5 et ARNm contenant des nombres différents de polysomes se distingue dans le processus de fractionnement polysome de saccharose ultracentrifugation dégradé6,7 , 8 , 9. l’analyse des fractions polysomique RNA puis permet de mesurer des changements dans les États translationnelles de différents mRNAs à l’échelle du génome et au cours de différentes conditions physiologiques4,7, 10. la méthode a été également utilisée pour révéler les rôles de 5′ UTR et 3′ UTR des séquences dans le contrôle de l’ARNm traduisibilité11, examiner le rôle des miARN dans la répression traductionnelle12, découvrir des défauts dans la biogenèse des ribosomes13 et comprendre le rôle des protéines associées aux ribosomes avec des maladies humaines14,15. Au cours de la dernière décennie, un rôle croissant pour la régulation de l’expression génique au cours de la traduction a émergé qui illustre son importance dans les maladies humaines. Les éléments de preuve pour le contrôle de la traduction dans le cancer, métabolique et maladies neurodégénératives est écrasante15,16,17,18. Par exemple, le dérèglement du contrôle de la traduction eIF4E dépendant contribue à autisme associés déficits15 et FMRP participe au blocage des ribosomes sur mRNA liés à l’autisme,14. Ainsi, polysomique de profilage est un outil très important pour l’étude des défauts de régulation traductionnelle dans plusieurs maladies humaines.
Analyse des protéines des fractions polysomique dans différentes conditions physiologiques dissèque la fonction des facteurs associés aux ribosomes pendant la traduction. La technique de profilage polysome a été utilisée dans de nombreuses espèces, y compris les levures, les cellules de mammifères, plantes et protozoaires10,19,20,21. Parasites protozoaires comme Trypanosoma et Leishmania pièce contrôle transcriptionnel limité de l’expression génique. Leurs génomes sont organisés en groupes de gènes polycistronique qui n’ont pas réglementés promoteur de transcription22. Au lieu de cela, l’expression des gènes du développement est surtout contrôlée au niveau de la traduction des protéines et à la stabilité des ARNm dans trypanosomatide espèce23,24. Compréhension du contrôle de la traduction en l’absence de régulation de la transcription est donc particulièrement importante pour ces organismes. Polysomique de profilage est un outil puissant pour étudier la régulation post-transcriptionnelle de l’expression génique à Leishmania25,26,27,28.
Les récents progrès dans la détection des niveaux d’ARNm individuels par le real time PCR quantitative (RT-qPCR) et pleine transcriptome par séquençage de nouvelle génération, ainsi que technologies de protéomique, apporte la résolution et les avantages du profilage polysomique à un nouveau niveau. L’utilisation de ces méthodes peut être étendue par l’analyse des différentes fractions polysomique par séquençage en RNA profondeur combiné à l’analyse protéomique pour surveiller l’État translationnelle de cellules sur une échelle de tout le génome. Cela permet l’identification de nouveaux acteurs moléculaires régissant la traduction dans différentes conditions physiologiques et pathologiques. Nous présentons ici un polysome universel profilage protocole utilisé sur trois modèles différents : le parasite Leishmania majeur, des cellules humaines cultivées et tissus d’origine animales. Nous présentons des conseils sur la préparation des lysats de cellules de différents organismes, l’optimisation des conditions du gradient, choix des inhibiteurs de la RNase et l’application de la RT-qPCR, Western blot et électrophorèse RNA pour analyser les fractions de polysome dans cette étude.
Fractionnement de polysome par gradient de saccharose combinés avec de l’ARN et analyse des protéines des fractions est une méthode puissante pour analyser translationnelle statut des différents mRNAs ou le translatome entier ainsi que des rôles de facteurs protéiques régulant translationnelle machines au cours de l’état normal, physiologique ou une maladie. Polysomique de profilage est une technique particulièrement adaptée pour étudier la régulation traductionnelle organismes tels que les trypanosomatid…
The authors have nothing to disclose.
Les auteurs remercient Ching Lee pour aide à l’enregistrement audio. La recherche a été soutenue par les fonds de démarrage de la Texas Tech University Health Sciences Center et par le centre d’Excellence pour la Neuroscience translationnelle et thérapeutique (CTNT) accorde le PN-CTNT 2017-05 AKHRJDHW à A.L.K. ; en partie par des subventions des NIH R01AI099380 K.Z. James C. Huffman et Kristen R. Baca étaient des érudits CISER (Centre pour l’intégration des souches éducation et recherche) et appuyés par le programme.
Instruments: | ||
Gradient master | Biocomp Instruments Inc. | 108 |
Piston Gradient Fractionator | Biocomp Instruments Inc. | 152 |
Fraction collector | Gilson, Inc. | FC203B |
NanoDrop One | Thermo Scientific | NanoDrop One |
Nikon inverted microscope | Nikon | ECLIPSE Ts2-FL/Ts2 |
2720 Thermal Cycler | Applied Biosystems by Life Technologies | 4359659 |
CO2 incubator | Panasonic Healthcare Co. | MCO-170A1CUV |
HERATHERM incubator | Thermo Scientific | 51028063 |
Biological Safety Cabinet, class II, type A2 | NuAire Inc. | NU-543-400 |
Revco freezer | Revco Technologies | ULT1386-5-D35 |
Beckman L8-M Ultracentifuge | Beckman Coulter | L8M-70 |
Centrifuge | Eppendorf | 5810R |
Centrifuge | Eppendorf | 5424 |
Ultracentrifuge Rotor SW41 | Beckman Coulter | 331362 |
Swing-bucket rotor | Eppendorf | A-4-62 |
Fixed angle rotor | Eppendorf | F-45-30-11 |
Quant Studio 12K Flex Real-Time PCR machine 285880228 | Applied Biosystems by life technologies | 4470661 |
TC20 Automated cell counter | Bio-Rad | 145-0102 |
Hemacytometer | Hausser Scientific | 02-671-51B |
Software | ||
Triax software | Biocomp Instruments Inc. | |
Materials: | ||
Counting slides, dual chamber for cell counter | Bio-Rad | 145-0011 |
1.5 mL microcentrifuge tube | USA Scientific | 1615-5500 |
Open-top polyclear centrifuge tubes, (14 mm x 89 mm) | Seton Scientific | 7030 |
Syringe, 5 mL | BD | 309646 |
BD Syringe 3 mL23 Gauge 1 Inch Needle | BD | 10020439 |
Nunclon Delta Surface plate, 14 cm | Thermo Scientific | 168381 |
Nunclon Delta Surface plate, 9 cm | Thermo Scientific | 172931 |
Nalgene rapid-flow 90mm filter unit, 500 mL, 0.2 aPES | Thermo Scientific | 569-0020 |
BioLite 75 cm3 flasks | Thermo Scientific | 130193 |
Nunc 50 mL conical centrifuge tubes | Thermo Scientific | 339653 |
Chemicals: | ||
Trizol LS | Ambion by Life Technologies | 10296028 |
HEPES | Fisher Scientific | BP310-500 |
Trizma base | Sigma | T1378-5KG |
Dulbecco's Modified Eagle's Medium-high glucose (DMEM) | Sigma | D6429-500ML |
Fetal Bovine Serum (FBS) | Sigma | F0926-50ML |
Penicillin-Streptomycin (P/S) | Sigma | P0781-100ML |
Lipofectamine 2000 | Invitrogen | 11668-019 |
Dulbecco's phosphate buffered saline (DPBS) | Sigma | D8537-500ML |
Magnesium chloride hexahydrate (MgCl2x6H2O) | Acros Organics | AC413415000 |
Potassium Chloride (KCl) | Sigma | P9541-500G |
Nonidet P 40 (NP-40) | Fluka (Sigma-Aldrich) | 74385 |
Recombinant Rnasin Ribonuclease Inhibitor | Promega | N2511 |
Heparin sodium salt | Sigma | H3993-1MU |
cOmplete Mini EDTA-free protease inhibitors | Roche Diagnostics | 11836170001 |
Glycogen | Thermo Scientific | R0551 |
Water | Sigma | W4502-1L |
Cycloheximide | Sigma | C7698-1G |
Chloroform | Fisher Scientific | 194002 |
Dithiotreitol (DTT) | Fisher Scientific | BP172-5 |
Ethidium Bromide | Fisher Scientific | BP-1302-10 |
Ethylenediaminetetraacetic acid disodium dehydrate (EDTA) | Fisher Scientific | S316-212 |
Optimem | Life Technologies | 22600050 |
Puromycin dihydrochloride | Sigma | P8833-100MG |
Sucrose | Fisher Scientific | S5-3KG |
Trypsin-EDTA solution | Sigma | T4049-100ML |
Hgh Capacity cDNA Reverse Transcriptase Kit | Applied Biosystems by life technologies | 4368814 |
Power SYBR Green PCR Master Mix | Applied Biosystems by life technologies | 4367659 |
HCl | Fisher Scientific | A144SI-212 |
Isopropanol | Fisher Scientific | BP26324 |
Potassium Hydroxide (KOH) | Sigma | 221473-500G |
Anti-RPL11 antibody | Abcam | ab79352 |
Ribosomal protein S6 (C-8) antibody | Santa Cruz Biotechnology Inc. | sc-74459 |
1xM199 | Sigma | M0393-10X1L |
Lithium cloride | Sigma | L-9650 |
Dimethyl sulfoxide (DMSO) | Fisher Scientific | D128-500 |
Gel Loading Buffer II | Thermo Scientific | AM8546G |
UltraPure Agarose | Thermo Scientific | 16500-100 |
Trichloracetic acid (TCA) | Fisher Scientific | A322-100 |
SuperSignal West Pico PLUS chemiluminescent substrate | Thermo Scientific | 34580 |
Formaldehyde | Fisher Scientific | BP531-500 |
Sodium Dodecyl Sulfate (SDS) | Sigma | L5750-1KG |
Phenylmethylsulfonyl fluoride (PMSF) | Sigma | P7626-5G |
RNeasy Mini kit | Qiagen | 74104 |
Adenosine 5′-triphosphate disodium salt hydrate (ATP) | Sigma | A1852-1VL |
Cytosine 5'-triphosphate disodium salt hydrate (CTP) | Sigma | C1506-250MG |
Uridine 5'-triphosphate trisodium salt hydrate (UTP) | Sigma | U6625-100MG |
Guanosine 5'-triphosphate sodium salt hydrate (GTP) | Sigma | G8877-250MG |
SP6 RNA Polymerase | NEB | M0207S |
Pyrophoshatase | Sigma | I1643-500UN |
Spermidine | Sigma | S0266-1G |