Общая цель Полисома метод профилирования является анализ поступательной деятельности индивидуальных mRNAs или транскриптом mRNAs во время синтеза белка. Этот метод имеет важное значение для исследования регулировка синтеза протеина, перевод активации и репрессий в области здравоохранения и несколько заболеваний человека.
Надлежащего белков в нужное время и в правильном количестве является основой нормальной клеточной функции и выживания в быстро меняющейся среде. Для долгое время исследования выражение гена были преобладаны исследований на уровне транскрипционный анализ. Однако устойчивого состояния уровня мРНК не хорошо коррелируют с производства белка, и переводимости mRNAs варьируется в зависимости от условий. В некоторых организмов, как паразит лейшманийвыражение протеина регулируется главным образом на уровне поступательное. Недавние исследования показали, что белки перевод dysregulation связан с раком, метаболические, нейродегенеративных и других болезней человека. Полисома профилирование является мощный метод для изучения белков перевод правил. Это позволяет измерить поступательного хода индивидуальных mRNAs или проверить перевод в геном масштабе. Основой этой технологии является разделение polysomes, рибосомы, их подразделений и бесплатные mRNAs во время центрифугирования от цитоплазмы lysate через градиент сахарозы. Здесь мы представляем универсальный Полисома профилирования протокол, используемый на трех различных моделей – паразит лейшмании основных, культивируемых клеток человека и животных тканей. Лейшмании клетки свободно растут в суспензии и культивируемых клеток человека растут в адэрентных монослоя, в то время как мыши яичка представляет пример тканей животных. Таким образом метод приспособлен для всех этих источников. Протокол для анализа polysomal фракций включает обнаружение отдельные уровни mRNA по RT-ПЦР, белки западной помарки и анализа рибосомной РНК электрофорезом. Этот метод может быть продлен изучение ассоциации мРНК рибосомы на уровне глубокой РНК seq транскриптом и анализ рибосомы связанных белков, масс-спектроскопии фракций. Метод можно легко регулировать другие биологические модели.
Регуляцию экспрессии генов в клетках контролируется транскрипционный анализ, посттранскрипционного и Посттрансляционная механизмами. Достижения в глубоких РНК последовательности позволяют исследования уровни mRNA установившегося в геном масштабе на беспрецедентном уровне. Однако последние результаты показали, что уровень мРНК установившегося не всегда коррелируют с белком производства1,2. Судьба отдельных транскрипт является очень сложным и зависит от многих факторов, как внутренних/внешних раздражителей, стресс и т.д. Регуляцию экспрессии генов во время синтеза белка обеспечивает еще один уровень управления выражений, необходимых для быстрого реагирования в изменяющихся условиях. Полисома (или «polyribosome»), профилирование, разделения и визуализация активно перевода рибосомы, является мощный метод для изучения регуляции синтеза белка. Хотя, его первый экспериментальный приложений появилась в 1960-х3, Полисома профилирование является в настоящее время одним из наиболее важных методов в белок перевод исследования4. Один мРНК могут быть переведены на более чем один рибосомы, приводит к образованию Полисома. Стенограммы может быть тупик на рибосомах с циклогексимида5 и мРНК, содержащих различное количество polysomes могут быть разделены в процессе ректификации Полисома сахарозы градиента ultracentrifugation6,7 , 8 , 9. анализ РНК polysomal фракций затем позволяет измерение изменений в трансляционной государствах индивидуальных mRNAs генома масштабе и в ходе различных физиологических условиях4,7, 10. метод также использовался для раскрыть роль 5′ УТР и 3′ УТР последовательностей в контроле мРНК переводимости11, изучить роль адаптивной трансляционная репрессий12, выявления дефектов в рибосома биогенеза13 и понять роль белков рибосомы связанные с заболеваний человека14,15. В течение последнего десятилетия растущая роль для регуляции экспрессии генов в процессе перевода выяснилось, что свидетельствует о его важности в заболеваниях человека. Свидетельство для трансляционного управления в рак, метаболические и нейродегенеративных заболеваний является подавляющее15,16,,17–18. К примеру, способствует регуляции eIF4E-зависимых трансляционная управления аутизмом связанных с дефицитом15 и FMRP участвует в тупик рибосом на мРНК, связанных с аутизмом14. Таким образом polysomal профилирование является очень важным инструментом для изучения дефекты в трансляционной регулирования в нескольких заболеваний человека.
Анализ протеина polysomal фракций при различных физиологических условиях рассекает функцию факторов, связанных с рибосомами в процессе перевода. Был использован метод профилирования Полисома у многих видов, включая дрожжи, клетки млекопитающих, растения и простейшие10,19,,2021. Протозойные паразитами Trypanosoma и лейшмании выставку ограниченное управление транскрипционный анализ экспрессии генов. Геномы организуются в полицистронная гена кластеры, которые не регулируются промоутер транскрипции22. Вместо этого экспрессии генов развития преимущественно контролируется на уровне перевода протеина и стабильность мРНК в Трипаносоматиды видов23,24. Таким образом понимание трансляционная управления при отсутствии регуляцию особенно важное значение для этих организмов. Polysomal профилирование является мощным инструментом для изучения посттранскрипционного регуляцию экспрессии генов в лейшмании25,26,27,28.
Недавний прогресс в обнаружения индивидуальных mRNAs уровней в режиме реального времени количественного PCR (RT-ПЦР) и полным транскриптом секвенирование нового поколения, а также технологий протеомики, приносит резолюции и преимущества polysomal профилирования на новый уровень. Использование этих методов может быть продлен путем анализа отдельных polysomal фракций, глубокие последовательности РНК, в сочетании с протеомного анализа для мониторинга трансляционная состояния клеток в геном-масштабе. Это позволяет выявлять новых молекулярных игроков, регулирующие перевод различных физиологических и патологических условиях. Здесь мы представляем универсальный Полисома профилирования протокол, используемый на трех различных моделей: паразит лейшмании крупных, культивируемых клеток человека и животных тканей. Мы представляем рекомендации по подготовке lysates клетки из разных организмов, оптимизация условий градиента, выбор РНКазы ингибиторов и применение RT-ПЦР, Западная помарка и электрофорез RNA для анализа Полисома фракции в этом исследовании.
Фракционирование Полисома градиент сахарозы в сочетании с РНК и белка анализ фракций является мощный метод для анализа трансляционная статус индивидуальных mRNAs или весь translatome, а также роли факторов белков, регулирующих поступательные машины во время нормальной физиологической или б?…
The authors have nothing to disclose.
Авторы благодарят Чинг ли за помощь с аудио записи. Исследования было поддержано запуска средства от центра Texas Tech университета медицинских наук и в центр передового опыта для Поступательное неврологии и терапии (CTNT) предоставить PN-CTNT 2017-05 AKHRJDHW A.L.K.; в части гранта NIH R01AI099380 К.Ж Джеймс C. Хаффмана и Кристен р. Baca были CISER (центр по интеграции стволовых образование и исследования) ученых и были поддержаны программой.
Instruments: | ||
Gradient master | Biocomp Instruments Inc. | 108 |
Piston Gradient Fractionator | Biocomp Instruments Inc. | 152 |
Fraction collector | Gilson, Inc. | FC203B |
NanoDrop One | Thermo Scientific | NanoDrop One |
Nikon inverted microscope | Nikon | ECLIPSE Ts2-FL/Ts2 |
2720 Thermal Cycler | Applied Biosystems by Life Technologies | 4359659 |
CO2 incubator | Panasonic Healthcare Co. | MCO-170A1CUV |
HERATHERM incubator | Thermo Scientific | 51028063 |
Biological Safety Cabinet, class II, type A2 | NuAire Inc. | NU-543-400 |
Revco freezer | Revco Technologies | ULT1386-5-D35 |
Beckman L8-M Ultracentifuge | Beckman Coulter | L8M-70 |
Centrifuge | Eppendorf | 5810R |
Centrifuge | Eppendorf | 5424 |
Ultracentrifuge Rotor SW41 | Beckman Coulter | 331362 |
Swing-bucket rotor | Eppendorf | A-4-62 |
Fixed angle rotor | Eppendorf | F-45-30-11 |
Quant Studio 12K Flex Real-Time PCR machine 285880228 | Applied Biosystems by life technologies | 4470661 |
TC20 Automated cell counter | Bio-Rad | 145-0102 |
Hemacytometer | Hausser Scientific | 02-671-51B |
Software | ||
Triax software | Biocomp Instruments Inc. | |
Materials: | ||
Counting slides, dual chamber for cell counter | Bio-Rad | 145-0011 |
1.5 mL microcentrifuge tube | USA Scientific | 1615-5500 |
Open-top polyclear centrifuge tubes, (14 mm x 89 mm) | Seton Scientific | 7030 |
Syringe, 5 mL | BD | 309646 |
BD Syringe 3 mL23 Gauge 1 Inch Needle | BD | 10020439 |
Nunclon Delta Surface plate, 14 cm | Thermo Scientific | 168381 |
Nunclon Delta Surface plate, 9 cm | Thermo Scientific | 172931 |
Nalgene rapid-flow 90mm filter unit, 500 mL, 0.2 aPES | Thermo Scientific | 569-0020 |
BioLite 75 cm3 flasks | Thermo Scientific | 130193 |
Nunc 50 mL conical centrifuge tubes | Thermo Scientific | 339653 |
Chemicals: | ||
Trizol LS | Ambion by Life Technologies | 10296028 |
HEPES | Fisher Scientific | BP310-500 |
Trizma base | Sigma | T1378-5KG |
Dulbecco's Modified Eagle's Medium-high glucose (DMEM) | Sigma | D6429-500ML |
Fetal Bovine Serum (FBS) | Sigma | F0926-50ML |
Penicillin-Streptomycin (P/S) | Sigma | P0781-100ML |
Lipofectamine 2000 | Invitrogen | 11668-019 |
Dulbecco's phosphate buffered saline (DPBS) | Sigma | D8537-500ML |
Magnesium chloride hexahydrate (MgCl2x6H2O) | Acros Organics | AC413415000 |
Potassium Chloride (KCl) | Sigma | P9541-500G |
Nonidet P 40 (NP-40) | Fluka (Sigma-Aldrich) | 74385 |
Recombinant Rnasin Ribonuclease Inhibitor | Promega | N2511 |
Heparin sodium salt | Sigma | H3993-1MU |
cOmplete Mini EDTA-free protease inhibitors | Roche Diagnostics | 11836170001 |
Glycogen | Thermo Scientific | R0551 |
Water | Sigma | W4502-1L |
Cycloheximide | Sigma | C7698-1G |
Chloroform | Fisher Scientific | 194002 |
Dithiotreitol (DTT) | Fisher Scientific | BP172-5 |
Ethidium Bromide | Fisher Scientific | BP-1302-10 |
Ethylenediaminetetraacetic acid disodium dehydrate (EDTA) | Fisher Scientific | S316-212 |
Optimem | Life Technologies | 22600050 |
Puromycin dihydrochloride | Sigma | P8833-100MG |
Sucrose | Fisher Scientific | S5-3KG |
Trypsin-EDTA solution | Sigma | T4049-100ML |
Hgh Capacity cDNA Reverse Transcriptase Kit | Applied Biosystems by life technologies | 4368814 |
Power SYBR Green PCR Master Mix | Applied Biosystems by life technologies | 4367659 |
HCl | Fisher Scientific | A144SI-212 |
Isopropanol | Fisher Scientific | BP26324 |
Potassium Hydroxide (KOH) | Sigma | 221473-500G |
Anti-RPL11 antibody | Abcam | ab79352 |
Ribosomal protein S6 (C-8) antibody | Santa Cruz Biotechnology Inc. | sc-74459 |
1xM199 | Sigma | M0393-10X1L |
Lithium cloride | Sigma | L-9650 |
Dimethyl sulfoxide (DMSO) | Fisher Scientific | D128-500 |
Gel Loading Buffer II | Thermo Scientific | AM8546G |
UltraPure Agarose | Thermo Scientific | 16500-100 |
Trichloracetic acid (TCA) | Fisher Scientific | A322-100 |
SuperSignal West Pico PLUS chemiluminescent substrate | Thermo Scientific | 34580 |
Formaldehyde | Fisher Scientific | BP531-500 |
Sodium Dodecyl Sulfate (SDS) | Sigma | L5750-1KG |
Phenylmethylsulfonyl fluoride (PMSF) | Sigma | P7626-5G |
RNeasy Mini kit | Qiagen | 74104 |
Adenosine 5′-triphosphate disodium salt hydrate (ATP) | Sigma | A1852-1VL |
Cytosine 5'-triphosphate disodium salt hydrate (CTP) | Sigma | C1506-250MG |
Uridine 5'-triphosphate trisodium salt hydrate (UTP) | Sigma | U6625-100MG |
Guanosine 5'-triphosphate sodium salt hydrate (GTP) | Sigma | G8877-250MG |
SP6 RNA Polymerase | NEB | M0207S |
Pyrophoshatase | Sigma | I1643-500UN |
Spermidine | Sigma | S0266-1G |