Loop de cromatina desempenha um papel significativo na regulação gênica; no entanto, tem havido sem avanços tecnológicos que permitem a modificação seletiva e reversível de loops de cromatina. Aqui descrevemos um sistema poderoso para reorganização do laço da cromatina usar CRISPR-dCas9 (CLOuD9), demonstrado para seletivamente e reversivelmente modular a expressão gênica no alvo loci.
Estudos recentes demonstraram claramente que cromatina de longo alcance, tridimensional loop jogo de interações, um papel importante na regulação da expressão gênica, mas se o loop é responsável ou um resultado de alterações na expressão gênica é ainda desconhecido. Até recentemente, como cromatina loop afeta a regulação da atividade do gene e a função celular tem sido relativamente ambígua, e limitações de métodos existentes para manipular essas estruturas impediram a exploração profunda dessas interações. Para resolver esta incerteza, nós produzimos um método para a reorganização do laço cromatina seletivo e reversível usando CRISPR-dCas9 (CLOuD9). O dinamismo do sistema CLOuD9 foi demonstrado pelo sucesso localização das construções CLOuD9 para loci genômicos para modular a conformação da cromatina local de destino. Importante, a capacidade de reverter o contato induzido e restaurar a conformação da cromatina endógena também foi confirmada. Modulação da expressão genética com este método estabelece a capacidade de regular a expressão gênica celular e ressalta o grande potencial para aplicações desta tecnologia na criação de loops de cromatina que afetam marcadamente gene estável de novo expressão nos contextos de desenvolvimento e de câncer.
A relação entre cromatina dobrar no núcleo e a organização específica do genoma tem atraído interesse significativo nos últimos anos, como tem sido mostrado ser intimamente associada com a expressão de gene1,2. Enquanto a relação exacta entre a atividade do gene e modulação da estrutura da cromatina permanece obscura, tem sido a hipótese de que as interações entre contatos cromossômicos como resultado da organização da cromatina tridimensional dinâmica servem um Gene regulador de função3. Com efeito, tal efeito foi bem demonstrado no locus do gene da globina humana, onde a região de locus de controle (LCR) regula a atividade dos genes da globina de maneira específica desenvolvente, criando um loop de cromatina entre as duas regiões4. No entanto, nesta e outras regiões, não está claro se cromatina loop é uma causa ou a consequência de alterações na expressão gênica.
Até agora, os desafios em estudar este fenômeno permaneceram sem solução. Por exemplo, outras tentativas de indução de loops de cromatina envolveram modificando a sequência de DNA linear ou procedimentos complicados, que exigem uma abundância de conhecimento sobre elementos específicos que facilitam a loop5,6, 7,8. Além disso, enquanto trabalho anterior sugeriu que cromatina loops de expressão gênica de unidade em um contexto específico e restrito de7,8, o nível no qual cromatina loop afeta transcrição globalmente é incerto. Embora o interesse no impacto de loop de longo alcance na expressão gênica tem crescido continuamente nos últimos anos, perguntas sem resposta sobre como estabelecer e manter contatos de cromatina para alterar a atividade do gene persistirem.
A tecnologia que temos engenharia emprega a nuclease deficiente em cluster regularmente intercaladas curta palíndromo repetições (CRISPR) – CRISPR – associadas proteína 9 (dCas9), para permitir o direcionamento amplamente aplicável de qualquer loci genômicos9. Esta tecnologia elimina as questões complexas relacionadas com modificações da sequência de DNA linear e é acessível sem significativo conhecimento prévio dos componentes de loop particulares. Mais notavelmente, a ferramenta é universal e amplamente aplicável às alças de cromatina reconhecidas no desenvolvimento, bem como uma variedade de doenças, como câncer. O poder do CLOuD9 é demonstrado, reversível, alterando a estrutura de loops para efetivamente modular a expressão gênica.
The Most passos críticos no loop de cromatina CLOuD9 são: 1) projetando ou usando o gRNAs correto, mídia 2) mudando diariamente em células transfectadas CLOuD9, incluindo a ABA ou DMSO, 3) manter o frescor da ABA e 4) executar avaliações de precisa e cuidadosos de conformação da cromatina.
Os limites de CLOuD9 principalmente residem na capacidade de criar guias para a região de destino de escolha. Guia de RNAs realizar a importante tarefa de localizar os componentes dCas9 para regiões de DNA alvo para ser dimerized e a eficácia dos guias baseiam-se em seu local de destino específico. Sem os componentes de gRNA adequada, o sistema não será capaz de formar reversivelmente CLOuD9 induzida por laços. Assim, projetando vários guias para cada região de interesse e espalhando os guias sobre uma região de 250-1000 bp, será assegurado pelo menos um guia bem sucedido. Guia local é também parte integrante resultados precisos. É importante evitar guias localizados em locais de ligação do fator da transcrição ou outras regiões críticas para evitar efeitos de fundo como acima ou para baixo de regulação da transcrição. Além disso, a localização precisa da construção de CLOuD9 ligeiramente pode afetar a transcrição do gene alvo. Isto enfatiza a importância de testar vários pares de guias para cada região de destino, para identificar o par mais robusto para fins experimentais. Além disso, em cada par de regiões-alvo, a construção da CSA deve ser alvejada com gRNAs por S. aureus, e construção de CSP deve ser alvejada com gRNAs por S. pyogenes para segmentação de especificidade.
Para garantir resultados precisos e dimerização correta, também é importante manter o frescor dos ambientes celulares seguindo a transdução das construções CLOuD9. Muda de mídia diária e a adição de dimerizer fresco (ou controle) garante que as construções complementares permanecerá na proximidade e preservar a conformação da cromatina alterado. Além disso, garantir a ABA é fresco e foi armazenado adequadamente de acordo com o protocolo do fabricante (aberto no prazo de 6 meses, ficou frio, protegidos da luz) é essencial para a obtenção de resultados autênticos.
Notavelmente, o dimerizer de ABA para CLOuD9 foi usado com as proteínas de dimerização ABI e PYL, ao invés do mais comumente utilizaram sistema FRB e FKBP. A necessidade de uma rapalog para o sistema FRB/FKBP teria limitado a aplicabilidade da CLOuD9, devido a toxicidade para as células cancerosas. O sistema alternativo de ABI/PYL contornado essa limitação, permitindo efetivamente CLOuD9 ser mais amplamente utilizáveis.
Coletivamente, nós desenvolvemos CLOuD9, uma tecnologia exclusiva e robusta que pode forçosamente mas reversível criar contatos entre loci genômicos de longo alcance do alvo. Através da indução de loops de cromatina, demonstramos também que CLOuD9 pode ser utilizada para modificar a expressão do gene no contexto celular adequado. A adaptabilidade da tecnologia permite o estudo irrestrito das interações entre qualquer dois loci genômicos, sem a necessidade de conhecimento prévio do loop regiões ou mecanismos de loop. Além disso, reversibilidade de demonstrada exclusiva do CLOuD9 mais permite análise dos mecanismos de loop em doença e desenvolvimento. Enquanto os efeitos no alvo de cromatina loop demonstraram claramente, ainda há a ser dados, oferecendo uma visão sobre os efeitos de loop fora do alvo e o subsequente impacto sobre os loops no alvo.
Nossos dados ilustra apenas alguns aplicativos desta ferramenta, mas implica a principal ideia subjacente que arranjo de cromatina é indicativo da expressão do gene. Nossa tecnologia pode ser usada para estudar e revelar as nuances da estrutura da cromatina na regulação gênica, melhorando assim a compreensão global do papel da cromatina dobradura na transcrição de genes. Uma melhor compreensão das sutilezas da dinâmica transcriptional pode liderar o caminho na investigação e tratamento de câncer, doenças hereditárias e doenças congénitas, na qual cromatina distinta assembleia, sem dúvida, altera gene expressão20, 21,22,23. Trabalhos posteriores, utilizando a tecnologia CLOuD9 acenderá ainda mais detalhes sobre a organização e a dinâmica dos domínios da cromatina e como eles conduzem a dobradura para sustentar a expressão do gene estável no desenvolvimento e na doença.
The authors have nothing to disclose.
Agradecemos H. Chang, T. Oro, S. Tavazoie, R. Flynn, P. Batista, Calo E. e o laboratório de Wang inteiro para suporte técnico e leitura crítica do manuscrito. S.L.M foi apoiado neste trabalho através da NSFGRF (DGE-114747), NDSEGF (FA9550-11-C-0028) e o Instituto Nacional de câncer (1F99CA222541-01). K.C.W. é suportado por um prémio de carreira para médicos cientistas da Burroughs Wellcome fundo e é um Donald E. e Delia B. Baxter Foundation Scholar de faculdade.
RPMI 1640 media | Life Technologies | 11875-119 | For K562 cell culture |
DMEM media | Life Technologies | 11995-065 | 1X, for 293T cell culture |
lentiCRISPR v2 | Addgene plasmid | #52961 | For CLOuD9 plasmid development |
pRSV-Rev | Addgene plasmid | #12253 | For lentivirus production |
pMD2.G | Addgene plasmid | #12259 | For lentivirus production |
pMDLg/pRRE | Addgene plasmid | #12251 | For lentivirus production |
Lipofectamine 2000 | Thermo Fisher Scientific | 11668-019 | For lentivirus production |
anti-HA antibody | Cell Signaling | 3724 | For immunoprecipitation |
anti-Flag antibody | Sigma | F1804 | For immunoprecipitation |
DNeasy Blood and Tissue Kit | Qiagen | 69504 | For DNA extraction |
TRIzol | Life Technologies | 15596-018 | For RNA extraction |
RNeasy Kit | Qiagen | 74106 | For RNA extraction |
Superscript VILO | Life Technologies | 11754-050 | For cDNA |
SYBR Green I MasterMix | Roche | 4707516001 | For qPCR analysis |
Light Cycler 480II | Roche | For qPCR analysis | |
anti-H3K4me3 antibody | AbCam | ab8580 | For ChIP-qPCR |
anti-RNA Pol-II antibody | Active Motif | 61083 | For ChIP-qPCR |
EDTA free protease inhibitor | Roche | 11873580001 | For protein extraction |
4-12% Tris Glycine gel | Biorad | Any size, For western blot | |
anti-Rabbit HRP antibody | Santa Cruz | sc-2030 | For western blot |
anti-mouse HRP antibody | Cell Signaling | 7076S | For western blot |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000AKU | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000APE | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | Encode | ENCSR000FCJ | For ChIP-seq analysis |
K562 and H3K293 ChIP-Seq data | GEO | GSM1479215 | For ChIP-seq analysis |
Dynabeads Protein A for Immunoprecipitation | Thermo Fisher Scientific | 10001D | For immunoprecipitation |
Dynabeads Protein G for Immunoprecipitation | Thermo Fisher Scientific | 10004D | For immunoprecipitation |
RNA Clean & Concentrator-5 | Zymo Research | R1015 | For RNA purification |
Pierce 16% Formaldehyde Methanol-free | Thermo Fisher Scientific | 28908 | For crosslinking |
PX458 Plasmid | Addgene | 48138 | Suggested active Cas9 plasmid for gRNA cloning, but any active Cas9 plasmid will do |
QIAquick PCR Purification Kit | Qiagen | 28104 | For PCR purification |
FastDigest BsmBI | Thermo Fisher Scientific | FD0454 | For cloning guide RNAs |
FastAP | Thermo Fisher Scientific | EF0651 | For cloning guide RNAs |
10X FastDigest Buffer | Thermo Fisher Scientific | B64 | For cloning guide RNAs |
QIAquick Gel Extraction Kit | Qiagen | 28704 | For cloning guide RNAs |
10X T4 Ligation Buffer | NEB | B0202S | For cloning guide RNAs |
T4 PNK | NEB | M0201S | For cloning guide RNAs |
2X Quick Ligase Buffer | NEB | B2200S | For cloning guide RNAs |
Quick Ligase | NEB | M2200S | For cloning guide RNAs |
Buffers | |||
Farnham lysis buffer | 1% Tris-Cl pH 8.0, 1% SDS, 1% protease inhibitor water solution (non-EDTA), and 1 mM EDTA in water | ||
Modified RIPA buffer | 1% NP40/Igepal, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, and 1% protease inhibitor water solution (non-EDTA) in PBS pH 7.8 or 7.4 | ||
IP dilution buffer | 0.01% SDS, 1.1% Triton-X 100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 167 mM NaCl, 0.1x protease inhibitor | ||
Wash buffer | 100 mM Tris pH 9, 100 mM LiCl, 1% NP-40, and 1% sodium deoxycholate | ||
Swelling buffer | 0.1 M Tris pH 7.5, 10 mM potassium acetate, 15 mM magnesium acetate, 1% NP-40 | ||
Dilution buffer | 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8 and 167 mM NaCl | ||
IP elution buffer | 1% SDS, 10% NaHCO3 |