Ce protocole décrit une procédure détaillée pour la construction d’une bibliothèque d’anticorps synthétiques phage-affiché avec diversité sur mesure. Anticorps synthétiques ont des applications larges depuis la recherche fondamentale pour le diagnostic de la maladie et la thérapeutique.
Demande d’anticorps monoclonaux (ACM) dans la recherche fondamentale et de la médecine est en augmentation chaque année. Hybridome a été la méthode dominante pour mAb développement depuis son premier rapport en 1975. Comme une technologie alternative, méthodes d’affichage bactériophage mAb développement sont plus en plus attrayantes car Humira, du premier anticorps dérivés de phage et l’un du mAbs Best-seller, a été approuvé pour le traitement clinique de la polyarthrite rhumatoïde en 2002. Comme un animal non fondée mAb développement de la technologie, affichage de phage contourne immunogénicité des antigènes, humanisation et maintenance animale qui sont exigés d’hybridome traditionnel technicisées anticorps développement. Dans ce protocole, nous décrivons une méthode de construction des synthétiques bibliothèques Fab phage-affichée avec les diversités de de9-10 1010 obtenue avec une seule électroporation. Ce protocole se compose de : 1) préparation de haut rendement cellule electro-compétente ; 2) extraction de l’uracile-contenant de l’ADN simple brin (dU-ssDNA) ; 3) méthode de Kunkel base mutagénèse oligonucléotide-dirigée ; 4) électroporation et calcul de la taille de la bibliothèque ; 5) protéine A/L-base-immuno enzymatique (ELISA) pour le pliage et l’évaluation de la diversité fonctionnelle ; et 6) analyse des séquences ADN de diversité.
mAbs ont des applications larges, allant de la recherche fondamentale à la thérapeutique et le diagnostic de la maladie. À partir de 2016, plus de 60 mAbs ont été approuvés par les United States Food Drug Administration (FDA) pour le traitement clinique des maladies auto-immunes, le cancer et les maladies infectieuses1,2.
En 1975, Kohler et Milstein a signalé une technique pour la production continue d’anticorps d’une spécificité unique clonale provenant d’une source cellulaire dénommée « hybridomes » et cette technique est par la suite devenu la pierre angulaire de la médecine et l’industrie3 ,4. Génération du mAbs par cette méthode nécessite différentes étapes, y compris la production de l’antigène, immunisation de souris, extraction des lymphocytes B, fusion de cellules de B avec cellules myélomateuses pour former des hybridomes immortel, sélection de clone et pour des applications thérapeutiques, humanisation est nécessaire pour éviter les humains d’anticorps anti-souris (HAMA)4,5. Toutefois, pour cette technologie, y compris les toxines, agents pathogènes et des protéines hautement conservées des antigènes sont relativement inefficaces pour déclencher une réponse immunitaire in vivo pour mAb production5.
En 1978, Hutchison et coll. ont signalé l’utilisation d’un oligonucléotide de mutagenèse directe d’un résidu dans un simple brin bactériophage virus6. En 1985, Smith a indiqué que les fragments de gènes étrangers peuvent être fusionnés dans le cadre avec le gène codant pour la protéine de capside phage III et donc peuvent être affichées sur l’aire de phage sans compromettre son infectiosité7. Ces travaux de pionniers jeté les bases pour la construction ultérieure des bibliothèques phage-affiche anticorps immunitaire, naïf et synthétique forme avec les formats de chaîne unique variable fragment (scFv) et fragment de liaison de l’antigène (Fab) pour thérapeutique mAb development8,9. Du point de vue technique, développement axée sur l’affichage des anticorps phage propose une approche complémentaire au développement axée sur les hybridomes mAb qui peut aider à contourner les limitations que peuvent poser certains antigènes et l’humanisation du processus qui anticorps hybridome nécessitent souvent5. À partir de 2016, 6 phage affichage dérivé mAbs ont été approuvés dans le marché, y compris Humira, l’un des plus réussis mAbs utilisé pour le traitement de la polyarthrite rhumatoïde, et de nombreux candidats d’anticorps dérivés affichage phage sont actuellement à différents stades de la clinique enquête10.
Immunitaire et naïve bibliothèques anticorps phage, la diversité des déterminant la complémentarité régions (CDRs) de chaîne légère et lourde est dérivé du répertoire immunitaire naturel (c’est-à-diredes cellules B). En revanche, la diversité des CDRs dans les bibliothèques d’anticorps bactériophage synthétique est entièrement artificielle. Des approches synthétiques pour la construction de la bibliothèque offrent un contrôle précis sur la conception de la diversité des séquences et offrent des possibilités d’études mécanistes de la structure des anticorps et fonctionnent11,12. En outre, le cadre pour les bibliothèques synthétiques peut être optimisé avant la construction de la bibliothèque pour faciliter en aval, le développement industriel à grande échelle11,12.
En 1985, Kunkel a signalé une approche de mutagenèse basés sur un modèle simple brin ADN (ADN simple brin) à introduire des mutations dirigée dans bactériophage M13 efficacement13. Cette approche a été par la suite largement utilisée pour la construction de bibliothèques phage-affiché. Chimiquement synthétisés oligonucléotides d’ADN visant à introduire la diversité dans les CDRs Fab sont incorporés dans un phagemid avec un modèle de colonne vertébrale d’anticorps. Dans ce processus, le phagemid s’exprime comme un ADN simple brin contenant de l’uracile (dU-ADN simple brin) et les oligonucléotides sont recuites sur les CDRs et étendus pour synthétiser l’ADN à double brin (dsDNA) en présence de T7 ADN polymérase et T4 DNA ligase. Enfin, ds-ADN généré peut être introduit dans Escherichia coli par électroporation.
Pour forte diversité, construction de la bibliothèque de phage-affiché, électroporation haute tension d’un mélange de deux composants de cellules capables d’electro et de façon covalente dsDNA circulaire fermé (CCC-ADNdb) doit être préparé soigneusement. Sidhu et coll. modifié la préparation de cellules capables d’electro et d’ADN de méthodes traditionnelles et grandement amélioré bibliothèque diversité14.
Dans ce protocole, nous décrivons une méthode de construction des synthétiques bibliothèques Fab phage-affichée avec les diversités de de9-10 1010 obtenue avec une seule électroporation. La figure 1 représente une vue générale de construction de la bibliothèque, y compris : 1) préparation de haut rendement cellule electro-compétente ; 2) extraction dU-ADN simple brin ; 3) méthode de Kunkel base mutagénèse oligonucléotide-dirigée ; 4) électroporation et calcul de la taille de la bibliothèque ; 5) protéine A/L-base ELISA pour le pliage et l’évaluation de la diversité fonctionnelle ; et 6) analyse des séquences ADN de diversité. Tous les réactifs, les souches et les équipements sont répertoriées dans le tableau du matériau. Le tableau 1 illustre la configuration du réactif.
Pour construire la grande diversité, phage-affiche les bibliothèques Fab, contrôle qualité check-points sont nécessaires pour surveiller les différentes étapes de la construction, y compris la compétence des cellules capables d’electro, de qualité du modèle dU-ADN simple brin, efficacité de CCC-dsDNA synthèse, titre après électroporation, pliage Fab et la diversité des acides aminés des CDRs par séquençage de clones de Fab-phage.
Rendement élevé et la pureté dU-ssDNA est…
The authors have nothing to disclose.
Les auteurs apprécient Dr Frederic Fellouse du labo pour des commentaires critiques sur la construction de bibliothèque de phage Fab synthétique de Kunkel méthode basée Sidhu. Les auteurs apprécient Mme Alevtina Pavlenco et autres membres du laboratoire pour l’aide précieuse de préparation haute efficacité electro-compétente Sidhu cellules d’Escherichia coli et haute qualité dU-ADN simple brin. Ce travail a été soutenu par la Fondation nationale des sciences naturelles de Chine (Grant No. : 81572698, 31771006) à DW et par l’Université de ShanghaiTech (Grant No. : F-0301-13-005) au laboratoire de génie d’anticorps.
Reagents | |||
1.0 M H3PO4 | Fisher | AC29570 | |
1.0 M Tris, pH 8.0 | Invitrogen | 15568-025 | |
10 mM ATP | Invitrogen | 18330-019 | |
100 mM dithiothreitol | Fisher | BP172 | |
100 mM dNTP mix | GE Healthcare | 28-4065-60 | solution containing 25 mM each of dATP, dCTP, dGTP and dTTP. |
3,3’,5,5’-tetramethylbenzidine (TMB) | Kirkegaard & Perry Laboratories Inc | 50-76-02 | |
50X TAE | Invitrogen | 24710030 | |
Agarose | Fisher | BP160 | |
Carbenicillin, carb | Sigma | C1389 | 100 mg/mL in water, 0.22 μm filter-sterilize, work concentration: 100 μg/mL. |
Chloramphenicol, cmp | Sigma | C0378 | 100 mg/mL in ethanol, 0.22 μm filter-sterilize, work concentration: 10 μg/mL. |
EDTA 0.5 M, pH 8.0 | Invitrogen | AM9620G | |
Granulated agar | VWR | J637-500G | |
H2O2 peroxidase substrate | Kirkegaard & Perry Laboratories Inc | 50-65-02 | |
K2HPO4 | Sigma | 795488 | |
Kanamycin, kan | Fisher | AC61129 | 50 mg/mL in water, 0.22 μm filter-sterilize, work concentration: 50 μg/mL. |
KH2PO4 | Sigma | P2222 | |
Na2HPO4 | Sigma | 94046 | |
NaCl | Alfa Aesar | U19C015 | |
Nanodrop | Fisher | ND2000C | |
NaOH | Fisher | SS256 | ! CAUTION NaOH causes burns. |
NON-Fat Powdered Milk | Sangon Biotech | A600669 | |
PEG-8000 | Fisher | BP233 | |
Protein A-HRP conjugate | Invitrogen | 101123 | |
QIAprep Spin M13 Kit | Qiagen | 22704 | |
QIAquick Gel Extraction Kit | Qiagen | 28706 | |
QIAquick PCR Purification Kit | Qiagen | 28104 | |
Recombinant Protein L | Fisher | 77679 | |
T4 DNA polymerase | New England Biolabs | M0203S | |
T4 polynucleotide kinase | New England Biolabs | M0201S | |
T7 DNA polymerase | New England Biolabs | M0274S | |
Tetracycline, tet | Sigma | T7660 | 50 mg/mL in water, 0. 22 μm filter-sterilize, work concentration: 10 μg/mL. |
Tryptone | Fisher | 0123-07-5 | |
Tween-20 | Sigma | P2287 | |
Ultrapure glycerol | Invitrogen | 15514-011 | |
Uridine | Sigma | U3750 | 25 mg/mL in ethanol, work concentration: 0.25 μg/mL. |
Yeast extract | VWR | DF0127-08 | |
Name | Company | Catalog Number | Comments |
Strains | |||
E.coli CJ236 | New England Biolabs | E4141 | Genotype: dut– ung– thi-1 relA1 spoT1 mcrA/pCJ105(F' camr). Used for preparation of dU-ssDNA. |
E.coli SS320 | Lucigen | 60512 | Genotype: [F'proAB+lacIq lacZΔM15 Tn10 (tetr)] hsdR mcrB araD139 Δ(araABC-leu)7679 ΔlacX74 galUgalK rpsL thi. Optimized for high-efficiency electroporation and filamentous bacteriophage production. |
M13KO7 | New England Biolabs | N0315S | |
Name | Company | Catalog Number | Comments |
Equipment | |||
0.2-cm gap electroporation cuvette | BTX | ||
96-well 2mL Deep-well plates | Fisher | 278743 | |
96-well Maxisorp immunoplates | Nunc | 151759 | |
Baffled flasks | Corning | ||
Benchtop centrifuge | Eppendorf | 5811000096 | |
Centrifuge bottles | Nalgene | ||
ECM-630 electroporator | BTX | ||
Magnetic stir bars | Nalgene | ||
Thermo Fisher centrifuge | Fisher | ||
High speed shaker | TAITEK | MBR-034P | |
Microplate shaker | QILINBEIER | QB-9002 | |
Liquid handler for 96 and 384 wells | RAININ | ||
Mutil-channel pipette | RAININ | E4XLS | |
Amicon concentrator | Merck | UFC803096 |