相乗効果の薬剤の組み合わせは難しいと経験的に識別するために時間がかかるです。ここでは、識別し相乗小分子を検証する手法について述べる。
抗菌薬は20 世紀に劇的に寿命や生活の質を増加している、抗菌薬耐性は、全身性の感染症を治療するために私たちの社会全体の能力を脅かしています。単独で米国で抗生物質耐性感染症は年とコスト追加医療で約 200 億米ドル約 23,000 人を殺します。抗菌薬耐性に対処する方法の 1 つは療法前に感染源の生物とその薬剤耐性プロファイルが確認されている感染症の重要な初期段階で特に有用であります。多くの抗菌薬治療は併用療法を使用します。しかし、これらの組み合わせのほとんどは、添加剤、結合された効果は個々 の抗生物質の効果の合計と同じであることを意味します。いくつかの併用療法は相乗効果: 結合された効果は添加物よりもはるかに大きい。相乗的な組み合わせは、抗菌薬耐性菌の成長を抑えることができますので特に便利です。ただし、これらの組み合わせが珍しいとを識別することは困難です。これはペアの方法でテストするために必要な分子の膨大な数によるもの: 1,000 分子のライブラリには 100 万の潜在的な組み合わせ。したがって、相乗効果のための分子を予測する努力がされました。この資料では、重複2法 (O2M) として知られている小分子で相乗ペアを予測するための私たちの高スループット方法について説明します。O2M が過敏相乗ペアの各分子が他の分子に変異を識別するのに化学遺伝的データセットのパターンを使用します。ブラウンの実験室は、変異がない野生型の細胞の増殖を抑制する分子の高スループットの画面を実行することによってこの成長の違いを悪用します。ラボの仕事は、以前抗生物質のトリメトプリムと抗真菌薬のフルコナゾールこの戦略を使用して相乗効果の分子を識別されます。著者らは、複数の微生物のため変更することができます新しい相乗的な組み合わせの方法画面を紹介します。
抗生物質耐性菌は、1CDC によると米国の毎年以上 200 万感染症や 23,000 の死を引き起こします。新しい治療法は、これらの感染症を克服するために必要です。これらの新しい治療法を特定する戦略には、新しい抗菌薬の開発や小さな分子微生物感染症2,3、4を治療するために他の条件のために承認の転用が含まれます。しかし、新しい薬剤の発見は非常に高価な時間のかかるです。新薬を識別できないことがあります薬を転用または薬剤ターゲット5,6。私たちの研究室は、相乗的組み合わせ療法として知られている 3 番目の戦略について説明します。相乗的な組み合わせは、2 つの小さい分子は一緒に彼らの個々 の効能7の添加効果より大きい薬効を持つ場合に発生します。さらに、相乗的な組み合わせすることができますレンダリングすること偉大な潜在的な8,9、以下の不要なオフターゲット効果だけでなくペアの小さな分子のいずれかに耐性病原体に対して有効であります。 10。
相乗ペアは、薬物の組み合わせ11,12,13の約 4-10% に発生するまれな。このように、ペアワイズ画面などの伝統的な技法、挑戦的な 100 分子の小さなライブラリからの潜在的な組み合わせの何千もの時間がかかる。さらに、相乗作用通常予測できない化合物14の活動から。ただし、相乗的組み合わせは、重複2メソッド (O2M)12と呼ばれる画面に高スループットのアプローチを開発しました。このメソッドは、ここで説明はこれらの相乗のペアをより速くより効率的な識別するためことができます。O2M は、知られている相乗ペアと化学遺伝学データセットの使用を必要とします。ノックアウト変異体のライブラリは、多くの異なる小さな分子の存在下で育てられたとき、化学遺伝学データセットが生成されます。その同じ突然変異体の表現型を引き出す他の小さな分子が既知の各メンバーと相乗効果も知られている相乗ペアで 1 つの分子が 2 番目の相乗的分子として特定ノックアウト変異体から同じ表現型を引き起こす場合相乗のペア。この根拠は、相乗抗生物質ペアエシェリヒア属大腸菌 (E. 大腸菌)に対してアクティブと病原性の真菌クリプトコッカス ・ ネオフォルマンス(c. に対してアクティブな相乗的抗真菌薬のペアを識別するブラウンの実験室で使用されていますネオフォルマンス)11,12。O2M は様々 な病原体に適応できるだけでなく、分子の大規模なライブラリのスクリーニングは、簡単かつ迅速に相乗のペアを識別します。O2M によって識別される遺伝的変異スクリーニングの相乗効果の予測小さな分子のみを検証することができます。したがって、あった場合のみ 20 分子の相乗効果を予測したライブラリで、今相乗効果の試験日の問題を受け取る一方で、2,000 分子ライブラリーのペアワイズ テストと、月がかかるでしょう。O2M は、プログラミングスキルは不要、必要な機器はほとんどのラボや中核施設で利用可能です。薬の組み合わせに興味がある研究者に加えて O2M 分析薬物画面が完了し、重要な薬物相互作用を識別することによって彼らのヒット曲を拡大したい人誰にも興味深いものです。以下、細菌、相乗効果の小さい分子を識別するだけでなく、よく知られている試金15,16の予測の相乗作用を検証するプロトコルです。
相乗効果の小さい分子のペアは、微生物感染症の治療に強力なツールをすることができますまだ彼ら相乗ペアが識別するために挑戦的なのでその完全臨床的可能性に達していません。本稿では、シンプルなペアの組み合わせよりもはるかに高速の相乗組み合わせを識別するためのメソッドについて説明します。化学遺伝学データセットを使用して、O2M は相乗的組み合わせを予測するために小…
The authors have nothing to disclose.
この作品は、J.C.S.B. にユタ大学の病理からのスタートアップ助成金によって支えられました。
Bioscreen C | instrument | Growth Curves USA | |
Synergy H1 | instrument | BioTek | |
M9 broth | reagent | Amresco | J863-500G |
Casamino Acids | reagent | Fisher Scientific | BP1424-500 |
Glucose | reagent | Sigma | G7021-10KG |
Nicotinic Acid | reagent | Alfa Aesar | A12683 |
Thiamine | reagent | Acros Organics | 148991000 |
CaCl2 Dihydrate | reagent | Fisher | C79-500 |
MgSO4 Heptahydrate | reagent | Fisher | M63-500 |
chemical-genetics dataset | dataset | examples include Nichols et al., Cell, 2011, Brown et al, Cell, 2014, and others cited in the text. | |
trimethoprim (example input drug; any can be used) | reagent | Fisher Scientific | ICN19552701 |
sulfamethoxazole (example test drug; any can be used) | reagent | Fisher Scientific | ICN15671125 |