Summary

化学感受器配体结合域的高效复用与纯化方法

Published: December 12, 2017
doi:

Summary

提出了一种 dCACHE 周质配体结合域的复用过程, 该方法由包涵体化学感受器 Tlp3 和纯化, 产生毫克量的蛋白质.

Abstract

chemoreceptors 和结构研究的天然配体的鉴定, 旨在澄清配位特异性的分子基础, 可大大促进了毫克量的纯, 折叠配体结合域的生产。试图 heterologously 表达周质配体结合域的细菌 chemoreceptors 在大肠杆菌 (大肠杆菌) 往往导致他们的目标纳入纳入机构. 本文采用空肠弯曲菌 (周质) 化学感受器 Tlp3 的 dCACHE 配体结合域为例, 提出了从包涵体中提取蛋白质、复性和纯化的方法.该方法涉及的兴趣蛋白的表达与裂解他的6标签, 分离和尿素介导 solubilisation 的包涵体, 蛋白质复用尿素耗竭, 并通过亲和层析纯化,其次是标签去除和大小排除色谱。循环二色谱光谱学用于确认纯蛋白的折叠状态。已经证明, 该协议一般是有用的生产毫克量的 dCACHE 周质配体结合域的其他细菌 chemoreceptors 在可溶性和 crystallisable 的形式。

Introduction

趋化和运动已被证明在空肠弯曲菌发病机制中发挥重要作用, 通过促进细菌的殖民和入侵主机1,2,3。随着化学信号的引导, 趋化使细菌朝着最佳的生长环境迈进。这个过程包括通过一组称为 chemoreceptors 的蛋白质 (Tlps) 识别细胞内和环境化学线索。大多数 chemoreceptors 是膜嵌入蛋白与 extracytoplasmic 配体结合域 (LBD), 跨膜领域和细胞质信令域, 后者与胞浆信号蛋白相互作用, 传输讯号到鞭毛马达4,5,6,7

十一种不同的 chemoreceptors 已在C.菌基因组4,8中确定。到目前为止, 只有其中一些 chemoreceptors 的特点和配体特异性的 Tlp19, Tlp310,11, Tlp411, Tlp712, Tlp1113是已知的。通过生产折叠和高度纯净的重组化学感受器LBDs14、, 可以极大地促进该物种中剩余 chemoreceptors 的天然配体的鉴定, 以及其他细菌中的许多 chemoreceptors.15, 16. 然而, 在大肠杆菌中 heterologously 表达周质 LBDs 细菌 chemoreceptors 的尝试往往导致将其定向到包含机构 17, 18, 19.然而, 这种现象可以方便地分离和恢复现有的蛋白质。本文以周质化学感受器 Tlp3 的 LBD 为例, 提出了一种从包涵体中提取蛋白质、复性和纯化的方法. 之所以选择此示例, 是因为 Tlp3-LBD 属于 dCACHE 家族20 , 这些传感域大量发现在双组分组氨酸激酶和 chemoreceptors 中, 原核生物20, 21,22,23

在这种方法中, 基于 pET151/D-TOPO 向量的表达式构造被设计为将 N 终端合并为其6标记, 后跟一个烟草蚀刻病毒 (TEV) 蛋白酶解切站点, 用于随后的标记删除19。该协议描述了蛋白在大肠杆菌中的过度表达, 分离和尿素介导的 solubilisation, 以及尿素耗竭的蛋白质复用。在复性后, 用亲和层析法纯化样品, 采用选择性标记去除和粒度排斥层析。用循环二色谱光谱法确定纯化蛋白的折叠状态。这是以前开发的方法的修改版本, 用于恢复和纯化不同化学感受器、幽门螺杆菌TlpC19 的 LBD。此过程在图 1中总结, 产生 10-20 毫克的纯, 未标记的 Tlp3-LBD 每 1 L 细菌培养, 蛋白质纯度 > 90% 按 SDS 页估计。

Protocol

1. 他的6-Tlp3-LBD 在大肠杆菌中的表达 接种150毫升不育 Luria Bertani (LB) 汤, 含有50µg 毫升-1氨苄西林, BL21 密码子加 (DE3) RIPL 细胞, 用 pET151/D-TOPO 向量变换, 用于表达其6Tlp3-LBD (氨基酸残留 42-291), 并孵化它在37°c 在一个振动筛 (轨道直径, 25 毫米) 与 200 rpm 隔夜。 准备六2升锥形烧瓶, 含800毫升不育 LB 汤和50µg 毫升-1氨苄西林。接种每瓶20毫升的隔夜文?…

Representative Results

重组表达他的6-Tlp3-LBD 在大肠杆菌导致蛋白质沉积在包涵体。在步骤2.13 中计算出的细菌培养 1 L 的表达率是其6-Tlp3-LBD 在包涵体中的大约100毫克。这里描述的蛋白质隔离过程和图 1中所说明的, 是通过亲和层析、标记去除和大小排除色谱的方法, 包括包含体的 solubilisation、蛋白质的复用和纯化。, 并产生 10-20 毫克纯, 未加标签的 T…

Discussion

本文介绍了细菌化学感受器 Tlp3 周质 LBD 中包涵体的表达和复性的简便方法。纯蛋白的制备涉及在大肠杆菌中对 pET 质粒编码基因的过度表达, 包括体的纯化和 solubilisation, 变性蛋白的复性及其纯化的连续亲和性和尺寸排除色谱步骤。尿素促进变性和稀释/透析介导的复性是该议定书的关键步骤, 最优化往往需要确保适当复存放在包含体的蛋白质26

Tlp3-LB…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢 Tlp3-LBD 的早期工作。Mayra. Machuca 感激 Departamento Admistrativo de Ciencia, Tecnología e Innovación COLCIENCIAS 为博士奖学金。

Materials

Tris base AMRESCO 497
Sodium chloride (NaCl) MERK MILLIPORE 1064041000
Ampicillin G-BIOSCIENCES A051-B
Phenylmethanesulfonyl fluoride (PMSF)  MERCK 52332
Triton x-100 AMRESCO 694
Isopropyl β-D-thiogalactoside (IPTG) ASTRAL SCIENTIFIC PTY LTD AST0487
Urea AMRESCO VWRC0568
Dithiothreitol ASTRAL SCIENTIFIC PTY LTD C-1029
L-arginine monohydrochloride SIGMA-ALDRICH A5131
Reduced L-glutathione SIGMA-ALDRICH G4251
Oxidized L-glutathione SIGMA-ALDRICH G4376
Sodium phosphate dibasic (Na2HPO4) SIGMA-ALDRICH  7558-79-4
Sodium phosphate monobasic (NaH2PO4) SIGMA-ALDRICH 10049-21-5
Ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA) AMRESCO VWRC20302.260
Imidazole SIGMA-ALDRICH I2399
Glycerol ASTRAL SCIENTIFIC PTY LTD BIOGB0232
Nickel chloride (NiCl2) SIGMA-ALDRICH 339350
Glycine AMRESCO VWRC0167
Sodium dodecyl sulfate (SDS) SIGMA-ALDRICH L4509
Unstained Protein Ladder, Broad Range (10-250 kDa) NEW ENGLAND BIOLABS P7703
Amicon Ultracel centrifugal concentrator (Millipore) MERCK UFC901096
50 mL Falcon tube FALCON BDAA352070
Dialysis tubing LIVINGSTONE INTERNATIONAL PTY Dialysis
Snakeskin dialysis tubing THERMO SCIENTIFIC™ 68100
Prepacked HiTrap Chelating HP column GE HEALTHCARE LIFE SCIENCES 17-0408-01 
EmulsiFlex-C5 high-pressure homogeniser AVESTIN EmulsiFlex™ – C5
Peristaltic Pump P-1 GE HEALTHCARE LIFE SCIENCES 18-1110-91 
Superdex 200 HiLoad 26/60 size-exclusion column  GE HEALTHCARE LIFE SCIENCES 28989336
JASCO J-815 spectropolarimeter JASCO J-815

Referências

  1. Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., Gross, U. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol. 300 (4), 205-211 (2010).
  2. Josenhans, C., Suerbaum, S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol. 291 (8), 605-614 (2002).
  3. Morooka, T., Umeda, A., Amako, K. Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol. 131 (8), 1973-1980 (1985).
  4. Zautner, A. E., Tareen, A. M., Gross, U., Lugert, R. Chemotaxis in Campylobacter jejuni. Eur J Microbiol Immunol (Bp). 2 (1), 24-31 (2012).
  5. Zhulin, I. B. The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol. 45, 157-198 (2001).
  6. Fernando, U., Biswas, D., Allan, B., Willson, P., Potter, A. A. Influence of Campylobacter jejuni fliA, rpoN and flgK genes on colonization of the chicken gut. Int J Food Microbiol. 118 (2), 194-200 (2007).
  7. Salah Ud-Din, A. I., Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci. , (2017).
  8. Parkhill, J., et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 403 (6770), 665-668 (2000).
  9. Hartley-Tassell, L. E., et al. Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol. 75 (3), 710-730 (2010).
  10. Rahman, H., et al. Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog. 10 (1), e1003822 (2014).
  11. Li, Z., et al. Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol. 63 (Pt 3), 343-354 (2014).
  12. Tareen, A. M., Dasti, J. I., Zautner, A. E., Gross, U., Lugert, R. Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology. 156 (Pt 10), 3123-3135 (2010).
  13. Day, C. J., et al. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni. Nat Commun. 7, 13206 (2016).
  14. McKellar, J. L., Minnell, J. J., Gerth, M. L. A high-throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae. Mol. Microbiol. 96 (4), 694-707 (2015).
  15. Fernandez, M., Morel, B., Corral-Lugo, A., Krell, T. Identification of a chemoreceptor that specifically mediates chemotaxis toward metabolizable purine derivatives. Mol. Microbiol. 99 (1), 34-42 (2016).
  16. Corral-Lugo, A., et al. Assessment of the contribution of chemoreceptor-based signaling to biofilm formation. Environ. Microbiol. , (2015).
  17. Machuca, M. A., Liu, Y. C., Roujeinikova, A. Cloning, expression, refolding, purification and preliminary crystallographic analysis of the sensory domain of the Campylobacter chemoreceptor for aspartate A (CcaA). Acta Crystallogr F Struct Biol Commun. 71 (Pt 1), 110-113 (2015).
  18. Machuca, M. A., Liu, Y. C., Beckham, S. A., Roujeinikova, A. Cloning, refolding, purification and preliminary crystallographic analysis of the sensory domain of the Campylobacter chemoreceptor for multiple ligands (CcmL). Acta Crystallogr F Struct Biol Commun. 71 (Pt 2), 211-216 (2015).
  19. Liu, Y. C., Roujeinikova, A. Expression, refolding, purification and crystallization of the sensory domain of the TlpC chemoreceptor from Helicobacter pylori for structural studies. Protein Expr. Purif. 107, 29-34 (2015).
  20. Upadhyay, A. A., Fleetwood, A. D., Adebali, O., Finn, R. D., Zhulin, I. B. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. PLoS Comput. Biol. 12 (4), e1004862 (2016).
  21. Bardy, S. L., Briegel, A., Rainville, S., Krell, T. Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J. Bacteriol. , (2017).
  22. Glekas, G. D., et al. The Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanisms. J. Biol. Chem. 287 (47), 39412-39418 (2012).
  23. Liu, Y. C., Machuca, M. A., Beckham, S. A., Gunzburg, M. J., Roujeinikova, A. Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains. Acta Crystallogr. D Biol. Crystallogr. 71 (Pt 10), 2127-2136 (2015).
  24. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254 (1976).
  25. Whitmore, L., Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers. 89 (5), 392-400 (2008).
  26. Singh, S. M., Panda, A. K. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng. 99 (4), 303-310 (2005).
  27. Lippincott, J., Apostol, I. Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea. Anal Biochem. 267 (1), 57-64 (1999).
  28. Cejka, J., Vodrazka, Z., Salak, J. Carbamylation of globin in electrophoresis and chromatography in the presence of urea. Biochim Biophys Acta. 154 (3), 589-591 (1968).
  29. Sun, S., Zhou, J. Y., Yang, W., Zhang, H. Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem. 446, 76-81 (2014).
  30. Hagel, P., Gerding, J. J., Fieggen, W., Bloemendal, H. Cyanate formation in solutions of urea. I. Calculation of cyanate concentrations at different temperature and pH. Biochim Biophys Acta. 243 (3), 366-373 (1971).
  31. Volkin, D. B., Mach, H., Middaugh, C. R. Degradative covalent reactions important to protein stability. Mol Biotechnol. 8 (2), 105-122 (1997).
  32. Stark, G. R. Reactions of cyanate with functional groups of proteins. 3. Reactions with amino and carboxyl groups. Bioquímica. 4 (6), 1030-1036 (1965).
  33. Lin, M. F., Williams, C., Murray, M. V., Conn, G., Ropp, P. A. Ion chromatographic quantification of cyanate in urea solutions: estimation of the efficiency of cyanate scavengers for use in recombinant protein manufacturing. J Chromatogr B Analyt Technol Biomed Life Sci. 803 (2), 353-362 (2004).
  34. Fischer, B., Sumner, I., Goodenough, P. Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol Bioeng. 41 (1), 3-13 (1993).
  35. Vallejo, L. F., Rinas, U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact. 3 (1), 11 (2004).
  36. Porath, J. Immobilized metal ion affinity chromatography. Protein Expr Purif. 3 (4), 263-281 (1992).
  37. Bornhorst, J. A., Falke, J. J. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 326, 245-254 (2000).
  38. Stulik, K., Pacakova, V., Ticha, M. Some potentialities and drawbacks of contemporary size-exclusion chromatography. J Biochem Biophys Methods. 56 (1-3), 1-13 (2003).
  39. Kunji, E. R., Harding, M., Butler, P. J., Akamine, P. Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods. 46 (2), 62-72 (2008).
  40. Folta-Stogniew, E. Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. Methods Mol Biol. 328, 97-112 (2006).
  41. Lebowitz, J., Lewis, M. S., Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11 (9), 2067-2079 (2002).
  42. Machuca, M. A., Liu, Y. C., Beckham, S. A., Gunzburg, M. J., Roujeinikova, A. The Crystal Structure of the Tandem-PAS Sensing Domain of Campylobacter jejuni Chemoreceptor Tlp1 Suggests Indirect Mechanism of Ligand Recognition. J. Struct. Biol. 194 (2), 205-213 (2016).
  43. Rico-Jimenez, M., et al. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate. Mol. Microbiol. 88 (6), 1230-1243 (2013).
  44. Salah Ud-Din, A. I. M., Roujeinikova, A. The periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type B (CtaB): Cloning, refolding, purification, crystallization, and X-ray crystallographic analysis. Biosci. Trends. 11 (2), 229-234 (2017).
  45. Stockel, J., Doring, K., Malotka, J., Jahnig, F., Dornmair, K. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. Eur J Biochem. 248 (3), 684-691 (1997).
  46. Cardamone, M., Puri, N. K., Brandon, M. R. Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Bioquímica. 34 (17), 5773-5794 (1995).

Play Video

Citar este artigo
Machuca, M. A., Roujeinikova, A. Method for Efficient Refolding and Purification of Chemoreceptor Ligand Binding Domain. J. Vis. Exp. (130), e57092, doi:10.3791/57092 (2017).

View Video