Este protocolo describe la medición de la permeabilidad de la barrera epitelial en el tratamiento farmacológico siguiente en tiempo real en humanos organitas intestinal mediante microscopía fluorescente y vivo microscopia celular.
Avances en la cultura 3D de tejidos intestinales obtenidos mediante biopsia o generados a partir de células pluripotentes mediante diferenciación dirigida, han resultado en modelos sofisticados en vitro de la mucosa intestinal. Aprovechamiento de estos sistemas emergentes del modelo requerirá la adaptación de herramientas y técnicas desarrolladas para los animales y los sistemas de cultivo 2D. Aquí, describimos una técnica para medir la permeabilidad de la barrera epitelial en organoides intestinal humano en tiempo real. Esto se logra mediante microinyección de dextrano marcada con fluorescencia y la proyección de imagen en un microscopio invertido con filtros epifluorescente. Medición en tiempo real de la permeabilidad de la barrera en organoides intestinal facilita la generación de datos temporales de alta resolución en tejido epitelial intestinal humano, aunque esta técnica puede aplicarse también a punto fijo de enfoques. Este protocolo es fácilmente adaptable para la medición de la permeabilidad de la barrera epitelial después de la exposición a agentes farmacológicos, productos bacterianos, toxinas o microorganismos vivos. Con pequeñas modificaciones, este protocolo también puede servir como un manual general de microinyección de organoides intestinal y los usuarios pueden elegir complementar este protocolo con aplicaciones posteriores adicionales o alternativas después de microinyección.
El epitelio intestinal forma una barrera selectiva que media el transporte direccional de nutrientes, H2O, iones y residuos minimizando el intercambio inespecífica mediada por la difusión de otras partículas entre la luz y la mesenquimales tejido o sangre fuente1,2. La permeabilidad de la barrera epitelial intestinal ha sido considerado como un parámetro funcional clave en salud y enfermedad3,4,5,6, que refleja la tasa de difusión de moléculas pequeñas a través del epitelio mediante el espacio paracelular. Medición de la permeabilidad de la barrera epitelial puede llevarse a cabo en7 modelos animales y en pacientes humanos8 a través de la ingestión de la lactulosa, que ningún transportador específico en el tracto gastrointestinal y la posterior colección y medición de las concentraciones de lactulosa en sangre periférica. Alternativos ingeridos marcadores de la función de barrera tales como fluorescencia de etiquetado carbohidratos también están disponibles9,10. Este enfoque ha sido adaptado para las culturas de célula epitelial intestinal en Transwell soporta11, un enfoque simplificado que permite un mayor control experimental, pero también ha sido criticado como un pobre predictor de en vivo permeabilidad debido a la ausencia de subtipos epiteliales diferenciados y tejido estructura12. Usando cámaras representan otro enfoque y permitir la medición de la función de barrera epitelial en mucosa intestinal todo ex vivo13. Aplicación de esta técnica es frecuentemente limitado por tejido disponibilidad y condiciones de13,14. Así son necesarios nuevos métodos que balancear rendimiento y reproducibilidad con relevancia fisiológica.
Novedades en vitro organogénesis han conducido a la adopción de sistemas de cultivo de tejidos 3D modelo como una sofisticada plataforma para recapitular la dinámica de los complejos tejidos15,16,17 ,18,19,20,21,22,23. En particular, han surgido humanas pluripotentes células madre (hPSC) derivados organitas intestinal humano (HIOs)19,24 como modelo experimental manejable y reproducible para el estudio de las interacciones microbianas en host y barrera epitelial dinámica25,26,27,28. Del mismo modo, organoides derivados de tejido humano (también conocido como enteroids) se pueden derivar de un procedimiento de biopsia simple y pueden utilizarse como un sistema manejable para estudiar la fisiología humana y la enfermedad15,29,30. Microinyección de organoides intestinal humana permite la entrega de compuestos experimentales25 o vive microbios25,31,32,33 a la apical epitelial superficie del lumen del organoide. Leslie y Huang et al. 25 recientemente adaptado esta técnica para medir la permeabilidad de la barrera en HIOs microinyectados con isotiocianato de fluoresceína (FITC) etiquetado dextrán después de la exposición a las toxinas bacterianas.
Este protocolo pretende ser una guía para la medición de la permeabilidad de la barrera epitelial en derivados hPSC HIOs y HIOs derivados de tejido mediante microscopía fluorescente. Con pequeñas modificaciones, también puede servir como un manual general de microinyección de HIOs con compuestos experimentales. Usuarios pueden complementar este protocolo con aplicaciones posteriores adicionales o alternativas después de la microinyección.
Este Protocolo establece un método general para la microinyección de HIOs hPSC-derivados y derivados de tejido intestinal organoides y la medición de la permeabilidad de la barrera epitelial en tiempo real. También hemos demostrado nuestro enfoque de análisis e interpretación de los datos generados mediante estos métodos. Dada la creciente adopción de organoides intestinal sistemas modelo16,20,21,28 y el interés de muchos años en la permeabilidad de la barrera intestinal como fisiológicamente relevantes funcional resultado3,4,5,6, esperamos que otras personas que trabajan en este campo serán capaces de aplicar y aprovechar estos métodos.
Hay varios pasos que son fundamentales para la aplicación de esta técnica. Acceso a alta calidad hPSC – o tejido tejido derivado de HIO debe establecerse antes de la extensa experimentación con microinyección. HIO macroestructura puede ser heterogéneo, con variación de tamaño y forma, aunque la identidad del tejido y la morfología celular es altamente reproducible cuando utilizando la metodología establecida para generar HIOs24. HIOs esféricas que consta de una sola luz semi transparente y mide aproximadamente 1 mm de diámetro son ideales para la medición de la fluorescencia luminal en tiempo real y microinyección. En algunos casos, fallará microinyección, dando por resultado derrumbamiento del HIO u obvia salida del material inyectado. HIOs pueden quitarse de la cultura bien a discreción del usuario utilizando una micropipeta estándar. Considere las lentes del objetivo disponibles en una plataforma de proyección de imagen al seleccionar HIOs de microinyección y la proyección de imagen. En general, 2-4 X lentes del objetivo son ideales para la captura de la señal fluorescente completada de HIO, aunque un objetivo de X 10 se puede utilizar si no se dispone de lentes de baja potencia o si los HIOs disponibles son < 1 mm de diámetro. Software de imágenes debe permitir la captura automática de imágenes fluorescentes en los puntos definidos en el tiempo.
Varias modificaciones de este protocolo son posibles con el fin de satisfacer las necesidades experimentales. Por ejemplo, los resultados de pruebas de la función de barrera pueden ser dependientes en el tamaño molecular de los compuestos de uso43 y puede ser apropiado probar preparaciones de dextrano de peso molecular variable. Además, la proyección de imagen trasmitida puede realizarse además de imágenes de fluorescencia como indicador de la integridad estructural general del tejido25. Cuando se realiza la microinyección de bacterias vivas25,28,31,32,33,44, puede ser necesario añadir penicilina y estreptomicina o gentamicina a los medios de cultivo HIO antes o después de la microinyección. El exterior de la microcapillary que se contaminan durante el llenado con la suspensión del cultivo bacteriano y esto puede ser transferido a los medios de comunicación HIO. Alternativamente, puede realizarse microinyección en HIOs suspendidas en la matriz extracelular (por ejemplo, Matrigel) sin medios de comunicación, agregando a los medios de comunicación una vez finalizada la microinyección. Esto puede limitar la contaminación a la matriz extracelular y la cara externa de la HIO. Al planificar el análisis de crecimiento microbiano, puede ser necesario retirar antibióticos en los medios de comunicación después de 1-2 h para evitar frenar o prevenir el crecimiento de organismos microinyectados.
Finalmente, reconociendo que no todos los investigadores tendrán acceso a equipo de microscopía para proyección de imagen en vitro , es importante señalar que los procedimientos descritos en este protocolo de recogida de datos de fluorescencia pueden ser aplicados a imágenes tomadas en los puntos de tiempo fijados utilizando microscopía epifluorescente estándar sin controles ambientales o captura de imágenes automatizado. Ejemplos de este enfoque pueden encontrarse en los informes por Leslie y Huang et al. 25, que examinaron la actividad de toxina de C. difficile en organoides intestinales derivados de hPSC y Karve y Pradan et al. 44, que examinó la permeabilidad de la barrera epitelial en similares derivados de hPSC organitas intestinal microinyectados con en e. coli. Operación manual de equipos puede resultar en una mayor variación y dificultad en la normalización de la señal fluorescente. Cuando se realiza la proyección de imagen manual de FITC-los dextranos inyecta HIOs es esencial mantener aumento fijo, la intensidad de excitación fluorescente y tiempos de exposición durante todo el experimento para evitar la distorsión de las mediciones de intensidad fluorescente.
The authors have nothing to disclose.
Los autores desean agradecer a los Drs. Stephanie Spohn y Basilea Abuaita muchas discusiones útiles en microinyección organoide. JRS es apoyado por el consorcio de células madre intestinales (U01DK103141), un proyecto de investigación financiado por el Instituto Nacional de Diabetes y digestivo y Kidney Diseases (NIDDK) y el Instituto Nacional de alergias y enfermedades infecciosas (NIAID). JRS y VBY son apoyados por el NIAID novela, sistemas de modelo alternativo para Consorcio de enfermedades entéricas (NAMSED) (U19AI116482). DRH se admite la concesión de la formación de mecanismos de patogénesis microbiana desde el Instituto Nacional de alergias y enfermedades infecciosas (NIAID, T32AI007528) y el Premio de ciencia traslacional y clínica al Instituto Michigan de clínica y salud Investigación (UL1TR000433).
Los archivos de información y código de análisis de datos utilizados en este manuscrito están disponibles en https://github.com/hilldr/HIO_microinjection.
EGTA 0.5 M sterile (pH 8.0) | Bioworld | 405200081 | |
Cell matrix solution (Matrigel) | Corning | 354230 | |
Deltavision RT live cell imaging system | GE Life Sciences | 29065728 | http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences/brands/deltavision/ |
Camera | GE Life Sciences | 29065728 | Included with Deltavision system |
softWoRx Imaging software | GE Life Sciences | 29065728 | Included with Deltavision system |
Biosafety cabinet | Labconco | Cell Logic+ | http://www.labconco.com/product/purifier-cell-logic-class-ii-type-a2-biosafety-cabinets-2/4262 |
1X PBS | Life Technologies | 10010-023 | |
Advanced DMEM-F12 | Life Technologies | 12634-010 | Component of ENR media; see McCraken et al. 24 |
B27 supplement (50X) | Life Technologies | 17504044 | Component of ENR media; see McCraken et al. 24 |
L-glutamine (100X) | Life Technologies | 25030-081 | Component of ENR media; see McCraken et al. 24 |
HEPES buffer | Life Technologies | 15630080 | Component of ENR media; see McCraken et al. 24 |
Manipulator | Narshge | UM-3C | |
Micromanipulator | Narshge | UM-1PF | |
Pipette Holder | Narshge | UP-1 | Alternate to Xenoworks pipette holder |
Magnetic stand | Narshge | GJ-1 | |
Dissecting scope | Olympus | SX61 | Recommended scope, although other models are likely compatible |
Olympus IX71 Fluorescent microscope | Olympus | IX71 | Included with Deltavision system |
CoolSNAP HQ2 | Photometrics | 29065728 | Included with Deltavision system |
Recombinant C. difficile Toxin A/TcdA Protein | R&D Systems | 8619-GT-020 | |
EGF | R&D Systems | 236-EG | Component of ENR media; see McCraken et al. 24 |
R-spondin 1 | R&D Systems | 4645-RS | Component of ENR media; see McCraken et al. 24 |
Noggin | R&D Systems | 6057-NG | Component of ENR media; see McCraken et al. 24 |
Mineral oil | Sigma-Aldrich | M8410 | |
FITC-dextran (4 kDa) | Sigma-Aldrich | 46944 | |
Micropipette puller | Sutter Instruments | P-30 | |
Nunc Lab-Tek II Chamber Slides | ThermoFisher Scientific | 154526PK | |
Glass filaments | WPI | TW100F-4 | |
Micropipette holder | Xenoworks | BR-MH2 | Preferred device |
Analog Tubing kit | Xenoworks | BR-AT | |
1/16 in clear ferrule | Xenoworks | V001104 | |
1-1.2 mm O-ring | Xenoworks | V300450 |