В этой статье мы представляем методы изоляции и дифференцировать стромальных клеток костного мозга и стволовых гемопоэтических клеток от мыши длинных костей. Две различные протоколы представлены приносит различных клеточных популяций, пригодных для расширения и дифференцировку в остеобластов, адипоциты и остеокласты.
Клетки стромы костного мозга (BMSCs) являются популяции клеток, обычно используется как представление мезенхимальных стволовых клеток в пробирке. Они находятся внутри полости костного наряду с гемопоэтических стволовых клеток (СКК), которые могут породить красные кровяные клетки, иммунных прародителями и остеокласты. Таким образом экстракции популяции клеток из костного мозга результатов в весьма разнородный набор различных клеточных популяций, которые могут представлять вызовы в экспериментальный дизайн и смешаем интерпретации данных. Несколько изоляции и культуры методы были разработаны в лабораториях для того чтобы получить более или менее однородной популяции BMSCs и СКК Инвитро. Здесь мы представляем два метода для изоляции BMSCs и СКК от мыши длинных костей: один метод, который дает смешанное население BMSCs и СКК и один метод, который пытается разделить два клеточных популяций на основе соблюдения. Оба метода предоставляют клетки для Остеогенные и адипогенном дифференциация экспериментов, а также функциональные анализы.
Основная мышиных BMSCs обычно используются как модель в vitro мезенхимальных стволовых клеток с момента их открытия в начале 1980-х1. Действительно культуры клеток пластик сторонник, покраснел от полости костного длинных костей поддерживать способность быть продифференцированным в остеобластов, остеокласты, хрящевые клетки или адипоцитов многих исследований в2,3, 4 , 5. Однако, костного мозга является уникальная ткань состоит из многих различных клеточных популяций, включая, но не ограничиваясь, BMSCs, СКК, эндотелия и иммунные клетки. Таким образом изоляции и культуры методы могут принести клеточных популяций с различными однородности. Использование таких методов для проверки потенциальных дифференциации от клеток может быть сложным. Например при сравнении клетки от мышей с различными генотипами, начиная с населением смешанного клеток ограничивает интерпретации данных. И наоборот, получение однородной популяции BMSCs и СКК может быть технически сложным и не может быть как представитель модели ex vivo .
В нашей лаборатории мы в первую очередь заинтересованы в использовании BMSCs из-за их потенциал быть продифференцированным остеобластов, остеокластов и адипоцитов. Здесь мы представляем методов изоляции BMSCs и СКК и культуры, используемые для оценки osteoblastogenesis или adipogenesis в vitro, а также культур СКК дифференцироваться в остеокластов. Один метод использует смешанное население клеток костного мозга (BMC), содержащие BMSCs и СКК непосредственно подходит для adipogenesis, osteoblastogenesis и osteoclastogenesis (так называемый общий BMC). Этот метод является ex vivo представление ближе гетерогенности среди клеток костного мозга микроокружения. Другой метод отделяет приверженца от non сторонник клеток в попытке «чище» населения культуры BMSCs и СКК (называемых приверженцев BMSCs). Более поздних метод позволяет культуры клеток экспериментов, чтобы начать с более точное количество BMSCs или СКК и уменьшает потенциал комплекса косвенные эффекты других клеточных популяций, которые остаются в культуре. Оба метода были ранее опубликованы и используется для решения различных исследовательских вопросов6,,78,9.
В этой статье представлены два метода культуры BMSCs с их преимущества и ограничения. Изоляции клеток из костного мозга является относительно легким процессом. Однако получение популяции клеток, представитель мезенхимальных стволовых клеток или osteoclastic прародителями может быть сложным …
The authors have nothing to disclose.
Эта работа была поддержана национальных институтов здравоохранения (R01 AR061164-01A1).
200μL pipet tips | Rainin | 17014401 | |
1.5mL centrifuge tubes | USA Scientific | 1615-5500 | |
15mL conical tube | VWR | 89039-668 | |
50mL conical tube | VWR | 89039-660 | |
Phosphate Buffered Saline (PBS) | Sigma-Aldrich | 21-040-CM | |
Ethanol | Fisher Science | 04-355-451 | |
Dissection tools | |||
70μm filters | BD Falcon | 352350 | |
0.25% trypsin | Gibco | 25200 | |
Kimwipe | VWR | 82003-820 | |
Paraformaldehyde (PFA) | Electron Microscopy Science | 15710 | |
Alkaline Phosphatase kit | Sigma-Aldrich | 86R | |
Silver Nitrate | Sigma-Aldrich | S6506 | |
Sodium Thiosulfate | Sigma-Aldrich | S7026 | |
Oil Red O | Sigma-Aldrich | O0625 | |
Isopropanol | Sigma-Aldrich | 190764 | |
10% Neutral Buffered Formalin | Sigma-Aldrich | F5554-4L | |
Whatman filter Grade 1 | Sigma-Aldrich | Z274852 | |
Tartrate-Resistant Acid Phosphatase kit | Sigma-Aldrich | 387A | |
Glutaraldehyde | Electron | 16220 | |
MEMα | Gibco | 12571 | |
Fetal Bovine Serum | VWR | 97068-085 | |
Penicillin/Streptomycin | Invitrogen | 15140-122 | |
β-glycerol phosphate | Sigma-Aldrich | G9891 | |
Ascorbic acid | Sigma-Aldrich | A4544 | |
DMEM High Glucose | Sigma-Aldrich | D5796 | |
Rosiglitazone | Cayman Chemical | 717410 | |
Insulin | Sigma-Aldrich | I6634 | |
IBMX | Sigma-Aldrich | I5879 | |
Dexamethasone | Sigma-Aldrich | D4902 | |
RANKL | Peprotech | 310-01 | |
mCSF | Peprotech | 315-02 | |
Axio Observer inverter microscope | Zeiss |