La présente étude décrit une méthode simple de détecter des taux endogènes de la phosphorylation de Rab10 de leucine-rich repeat kinase 2.
Mutations de leucine-rich repeat kinase 2 (LRRK2) ont été démontrées d’être liée à la maladie de Parkinson familiale (FPD). Étant donné que l’activation anormale de l’activité de la kinase de LRRK2 a été impliquée dans la pathogénie de PD, il est essentiel d’établir une méthode permettant d’évaluer les niveaux physiologiques de l’activité de la kinase de LRRK2. Des études récentes ont révélé que LRRK2 phosphoryle des membres de la famille Rab GTPase, y compris Rab10, dans des conditions physiologiques. Bien que la phosphorylation de Rab10 endogène par LRRK2 dans des cellules cultivées puisse être détectée par spectrométrie de masse, il a été difficile de le détecter par immunotransfert en raison de la sensibilité médiocre d’anticorps de phosphorylation spécifiques actuellement disponibles pour Rab10. Nous décrivons ici une simple méthode de détecter les niveaux endogènes de la phosphorylation de Rab10 par LRRK2 basée sur immunoblotting utilisant sur gel de polyacrylamide sodium dodecyl sulfate (SDS-PAGE) combinée avec une étiquette de liaison phosphate (P-tag), qui N-(5-(2-aminoethylcarbamoyl)pyridin-2-ylmetyl) –N,N’,N’– tris (pyridin-2-yl-méthyl) – 1,3 – diaminopropan-2-ol. Le présent protocole non seulement fournit un exemple de la méthode utilisant la balise P mais permet également l’évaluation de comment les mutations comme inhibiteur traitement/administration ou tout autre facteur modifie la signalisation en aval de LRRK2 dans les cellules et tissus .
PD est l’un des maladies neurodégénératives plus répandues, affectant principalement les neurones dopaminergiques dans le midbrain, ce qui entraîne un dysfonctionnement des systèmes moteurs dans personnes âgées1. Alors que la plupart des patients développent des PD de manière sporadique, il y a des familles qui héritent de la maladie. Mutations dans plusieurs gènes ont été retrouvées à être assemblé avec le FPD2. Un des gènes responsables de FPD est LRRK2, dans lequel huit mutations faux-sens (N1437H, R1441C/G/H/S, Y1699C, G2019S et I2020T), liées à un FPD principalement héréditaire appelé PARK8 ont été jusqu’à présent signalé3,4,5. Plusieurs association pangénomique (GWAS) des patients atteints de la MP sporadiques ont également recensée variations génomiques du locus LRRK2 comme un facteur de risque pour PD, suggérant que l’anomalie dans le fonctionnement du LRRK2 est une cause fréquente de neurodégénérescence dans deux sporadiques et PARK8 FPD6,7,8.
LRRK2 est une grosse protéine (2 527 acides aminés), consistant en un domaine riche en leucine, un liant le GTP de Ras du domaine des protéines complexes (ROC), un C-terminal du domaine, un domaine kinase de sérine/thréonine protéine et un domaine de WD409ROC (COR). Les mutations de FPD huit localiser dans ces domaines fonctionnels ; N1437H et R1441C/G/H/S dans le domaine ROC, Y1699C dans le domaine de la CDR, G2019S et I2020T dans le domaine kinase. Car la mutation G2019S, que l’on trouve le plus souvent de mutation du PD patients10,11,12, augmente l’activité de la kinase de LRRK2 par 2-3 fois in vitro13, on fait l’hypothèse que l’augmentation anormale du phosphorylation de fonction LRRK2 est toxique pour les neurones. Cependant, il a été impossible d’étudier si la phosphorylation des substrats de LRRK2 physiologiquement pertinents est altérée dans les patients Parkinsoniens familial/sporadiques en raison du manque de méthodes évaluant dans les échantillons de patients dérivées.
La phosphorylation des protéines est généralement détectée par immunotransfert ou dosage immuno-enzymatique (ELISA) utilisant des anticorps reconnaissant spécifiquement l’État phosphorylé de protéines ou par spectrométrie de masse. Toutefois, la stratégie de l’ancienne parfois impossible d’appliquer à cause des difficultés dans la création d’anticorps spécifiques à la phosphorylation. Un marquage métabolique des cellules avec phosphate radioactif est une autre option à examiner les niveaux physiologiques de la phosphorylation quand la phosphorylation propres anticorps ne sont pas facilement disponibles. Toutefois, elle nécessite une grande quantité de matières radioactives et implique donc un équipement spécialisé pour la radioprotection14. L’analyse par spectrométrie de masse est plus sensible par rapport à ces méthodes immunochimiques et est devenu populaire dans l’analyse de la phosphorylation des protéines. Cependant, la préparation de l’échantillon est fastidieux et coûteux instruments sont requis pour l’analyse.
Un sous-ensemble de la famille Rab GTPase, y compris Rab10 et Rab8 a été récemment rapporté que des substrats physiologiques directs pour LRRK2 basée sur le résultat d’une analyse de phosphoproteomic à grande échelle15. Ensuite, nous avons démontré que la phosphorylation de Rab10 a été augmentée de mutations de FPD dans les fibroblastes embryonnaires de souris et dans les poumons des souris16de knockin. Dans ce rapport, nous avons choisi d’employer une électrophorèse de gel de polyacrylamide sodium dodécyl sulfate (SDS-PAGE)-méthode dans laquelle une molécule de P-tag est co polymérisée en gel SDS-PAGE (balise P SDS-PAGE) pour détecter les niveaux endogènes de la phosphorylation de Rab10, fondée sur parce qu’un anticorps très sensible spécifique pour Rab10 phosphorylés manquait encore. Nous n’avons pas réussi à détecter la phosphorylation de Rab8 endogène en raison de la faible sélectivité des anticorps actuellement disponibles pour Rab8 total. Par conséquent, nous avons décidé de mettre l’accent sur la phosphorylation de Rab10. LRRK2 phosphoryle Rab10 à Thr73 localiser au milieu de la région hautement conservée « switch II ». Haute conservation des sites de phosphorylation des protéines Rab est peut-être une des raisons pour lesquelles phosphospecific anticorps reconnaissant les protéines Rab distinctes sont difficiles à faire.
La phosphorylation de Rab8A par LRRK2 inhibe la liaison du Rabin8, un facteur d’échange de nucléotide de guanine (FEM) qui active la Rab8A en échangeant le PIB lié avec GTP15. La phosphorylation de Rab10 et Rab8A par LRRK2 inhibe aussi la liaison des inhibiteurs de la dissociation du PIB (GDIs), qui sont essentiels à l’activation des protéines Rab en extrayant Rab PIB lié aux protéines des membranes15. Collectivement, c’est l’hypothèse que la phosphorylation des protéines Rab par LRRK2 les empêche d’activation bien que le mécanisme moléculaire précis et les conséquences physiologiques de la phosphorylation demeurent flous.
P-tag SDS-PAGE a été inventé par Kinoshita et al. , en 2006 : dans cette méthode, acrylamide était par covalence associée à P-tag, une molécule capturant des phosphates avec une haute affinité, qui copolymérisés en SDS-PAGE gélifie17. Parce que les molécules de P-tag dans un gel SDS-PAGE retardent sélectivement la mobilité électrophorétique des protéines phosphorylées, P-tag SDS-PAGE peut séparer des protéines phosphorylées de ceux non-phosphorylés (Figure 1). Si la protéine d’intérêt est phosphorylé sur les résidus de multiples, on observera une échelle des bandes correspondant aux formes phosphorylées différemment. Dans le cas de Rab10, nous n’observons qu’une bande décalée, indiquant que Rab10 est phosphorylé uniquement à Thr73. L’avantage majeur de P-tag SDS-PAGE immunoblotting avec des anticorps spécifiques à la phosphorylation est que Rab10 phosphorylés peuvent être détectées par immunotransfert avec des anticorps non spécifiques à la phosphorylation (c.-à-d., reconnaissance Rab10 total) Après avoir été transféré sur la membrane, qui est généralement plus spécifiques, sensibles et disponible de sources commerciales et universitaires. Un autre avantage d’utiliser la balise P SDS-PAGE, c’est qu’on peut obtenir une estimation approximative de la stoechiométrie de la phosphorylation, ce qui est impossible par immunotransfert avec des anticorps spécifiques à la phosphorylation ou par marquage métabolique des cellules avec radioactif phosphates.
Hormis l’utilisation peu coûteuse balise P acrylamide et quelques modifications mineures liées à celui-ci, la présente méthode pour la détection de la phosphorylation de Rab10 par LRRK2 suit un protocole général d’immunoblotting.Par conséquent, il devrait être simple et facilement exécutable dans les laboratoires où immunoblotting est une pratique habituelle, avec tous les types d’échantillons, y compris des homogénats tissulaires, lysats cellulaires et protéines purifiées.
Nous décrivons ici une méthode facile et robuste de détecter Rab10 phosphorylation par LRRK2 niveaux endogènes basé sur la méthodologie P-tag. Parce que l’anticorps actuellement disponibles contre phosphorylés Rab10 fonctionne uniquement avec des protéines surexprimée15, la présente méthode utilisant la balise P SDS-PAGE est la seule façon d’évaluer les concentrations endogènes de la phosphorylation de Rab10. En outre, la présente méthode permet l’estimation de la stoechiomé…
The authors have nothing to disclose.
Nous remercions le Dr Takeshi Iwatsuboa (Université de Tokyo, Japon) aimablement les plasmides codant pour 3xFLAG-LRRK2 WT et mutants. Nous remercions également m. Dario Alessi (Université de Dundee, Royaume-Uni) aimablement IML-2 et le plasmide codant HA-Rab10. Ce travail a été soutenu par la société japonaise pour la Promotion of Science (JSPS) KAKENHI Grant nombre JP17K08265 (G.I.).
Reagents | |||
Dulbecco's phosphate-buffered saline (DPBS) | homemade | 150 mM NaCl, 8 mM Na2HPO4-12H2O, 2.7 mM KCl, 1.5 mM KH2PO4 in MilliQ water and sterilized by autoclaving | |
Sodium chloride | Nacalai Tesque | 31320-34 | |
Sodium Disodium Hydrogenphosphate 12-Water | Wako | 196-02835 | |
Potassium chloride | Wako | 163-03545 | |
Potassium Dihydrogen Phosphate | Wako | 169-04245 | |
2.5% Trypsin (10X) | Sigma-Aldrich | T4549 | Dilute 10-fold with sterile DPBS for preparing working solution |
Dulbecco's modified Eagle medium (DMEM) |
Wako | 044-29765 | |
Fetal bovine serum | BioWest | S1560 | Heat-inactivated at 56 °C for 30 min |
Penicillin-Streptomycin (100X) | Wako | 168-23191 | |
HEPES | Wako | 342-01375 | |
Sodium hydroxide | Wako | 198-13765 | |
Polyethylenimine HCl MAX, Linear, Mw 40,000 (PEI MAX 40000) | PolySciences, Inc. | 24765-1 | Stock solution was prepared in 20 mM HEPES-NaOH pH 7.0 at 1 mg/mL and the pH was then adjusted to 7.0 with NaOH |
Dimethyl sulfoxide | Wako | 045-28335 | |
Tris | STAR | RSP-THA500G | |
Hydrochloric acid | Wako | 080-01066 | |
Polyoxyethylene(10) Octylphenyl Ether | Wako | 160-24751 | Equivalent to Triton X-100 |
Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA) | Wako | 346-01312 | |
Sodium orthovanadate(V) | Wako | 198-09752 | |
Sodium fluoride | Kanto Chemical | 37174-20 | |
β-Glycerophosphoric Acid Disodium Salt Pentahydrate | Nacalai Tesque | 17103-82 | |
Sodium pyrophosphate decahydrate | Kokusan Chemical | 2113899 | |
Microcystin-LR | Wako | 136-12241 | |
Sucrose | Wako | 196-00015 | |
Complete EDTA-free protease inhibitor cocktail | Roche | 11873580001 | Dissolve one tablet in 1 mL water, which can be stored at -20 °C for a month. Use it at 1:50 dilution for cell lysis |
Pierce Coomassie (Bradford) Protein Assay Kit | Thermo Fisher Scientific | 23200 | |
Sodium dodecyl sulfate | Nacalai Tesque | 31607-65 | |
Glycerol | Wako | 075-00616 | |
Bromophenol blue | Wako | 021-02911 | |
β-mercaptoethanol | Kanto Chemical | 25099-00 | |
Ethanol | Wako | 056-06967 | |
Methanol | Wako | 136-01837 | |
Phosphate-binding tag acrylamide | Wako | AAL-107 | P-tag acrylamide |
40% (w/v) acrylamide solution | Nacalai Tesque | 06119-45 | Acrylamide:Bis = 29:1 |
Tetramethylethylenediamine (TEMED) | Nacalai Tesque | 33401-72 | |
Ammonium persulfate (APS) | Wako | 016-08021 | 10% (w/v) solution was prepared by dissolving the powder of ammonium persulfate in MilliQ water |
2-propanol | Wako | 166-04831 | |
Manganese chloride tetrahydrate | Sigma-Aldrich | M3634 | |
Precision Plus Protein Prestained Standard | Bio-Rad | 1610374, 1610373, 1610377 | Molecular weight marker used in the protocol |
WIDE-VIEW Prestained Protein Size Marker III | Wako | 230-02461 | |
Glycine | Nacalai Tesque | 17109-64 | |
Amersham Protran NC 0.45 | GE Healthcare | 10600007 | Nitrocellulose membrane |
Durapore Membrane Filter | EMD Millipore | GVHP00010 | PVDF membrane |
Filter Papers No.1 | Advantec | 00013600 | |
Ponceau S | Nacalai Tesque | 28322-72 | |
Acetic acid | Wako | 017-00251 | |
Tween-20 | Sigma-Aldrich | P1379 | polyoxyethylenesorbitan monolaurate |
Ethylenediaminetetraacetic acid (EDTA) | Wako | 345-01865 | |
Skim milk powder | Difco Laboratories | 232100 | |
Immunostar | Wako | 291-55203 | ECL solution (Normal sensitivity) |
Immunostar LD | Wako | 290-69904 | ECL solution (High sensitivity) |
CBB staining solution | homemade | 1 g CBB R-250, 50% (v/v) methanol, 10% (v/v) acetic acid in 1 L of MilliQ water | |
CBB R-250 | Wako | 031-17922 | |
CBB destaining solution | homemade | 12% (v/v) methanol, 7% (v/v) acetic acid in 1 L MilliQ water | |
Name | Company | Catalog Number | Comments |
Antibodies | |||
anti-HA antibody | Sigma-Aldrich | 11583816001 | Used at 0.2 μg/mL for immunoblotting. |
anti-Rab10 antibody | Cell Signaling Technology | #8127 | Used at 1:1000 for immunoblotting. Specificity was confirmed by CRISPR KO in Ito et al., Biochem J, 2016. |
anti-pSer935 antibody | Abcam | ab133450 | Used at 1 μg/mL for immunoblotting. |
anti-LRRK2 antibody | Abcam | ab133518 | Used at 1 μg/mL for immunoblotting. |
anti-α-tubulin antibody | Sigma-Aldrich | T9026 | Used at 1 μg/mL for immunoblotting. |
anti-GAPDH antibody | Santa-Cruz | sc-32233 | Used at 0.02 μg/mL for immunoblotting. |
Peroxidase AffiniPure Sheep Anti-Mouse IgG (H+L) | Jackson ImmunoResearch | 515-035-003 | Used at 0.16 μg/mL for immunoblotting. |
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) | Jackson ImmunoResearch | 111-035-003 | Used at 0.16 μg/mL for immunoblotting. |
Name | Company | Catalog Number | Comments |
Inhibitors | |||
GSK2578215A | MedChem Express | HY-13237 | Stock solution was prepared in DMSO at 10 mM and stored at -80 °C |
MLi-2 | Provided by Dr Dario Alessi (University of Dundee) | Stock solution was prepared in DMSO at 10 mM and stored at -80 °C | |
Name | Company | Catalog Number | Comments |
Plasmids | |||
Rab10/pcDNA5 FRT TO HA | Provided by Dr Dario Alessi (University of Dundee) |
This plasmid expresses amino-terminally HA-tagged human Rab10. | |
LRRK2 WT/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Ito et al., Biochemistry, 46: 1380–1388 (2007). This plasmid expresses amino-terminally 3xFLAG-tagged wild-type human LRRK2. | |
LRRK2 K1906M/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Ito et al., Biochemistry, 46: 1380–1388 (2007). This plasmid expresses amino-terminally 3xFLAG-tagged K1906M kinase-inactive mutant of human LRRK2. | |
LRRK2 N1437H/p3xFLAG-CMV-10 | This paper. This plasmid expresses amino-terminally 3xFLAG-tagged N1437H FPD mutant of human LRRK2. | ||
LRRK2 R1441C/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441C FPD mutant of human LRRK2. | |
LRRK2 R1441G/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441G FPD mutant of human LRRK2. | |
LRRK2 R1441H/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged R1441H FPD mutant of human LRRK2. | |
LRRK2 R1441S/p3xFLAG-CMV-10 | This paper. This plasmid expresses amino-terminally 3xFLAG-tagged R1441S FPD mutant of human LRRK2. | ||
LRRK2 Y1699C/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged Y1699C FPD mutant of human LRRK2. | |
LRRK2 G2019S/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged G2019S FPD mutant of human LRRK2. | |
LRRK2 I2020T/p3xFLAG-CMV-10 | Provided by Dr Takeshi Iwatsubo (University of Tokyo) | Kamikawaji et al., Biochemistry, 48: 10963–10975 (2013). This plasmid expresses amino-terminally 3xFLAG-tagged I2020T FPD mutant of human LRRK2. | |
Name | Company | Catalog Number | Comments |
Equipments | |||
CO2 incubator | Thermo Fisher Scientific | Forma Series II 3110 Water-Jacketed | |
Auto Pipette | Drummond | Pipet-Aid PA-400 | |
Micropipette P10 | Nichiryo | 00-NPX2-10 | 0.5–10 μL |
Micropipette P200 | Nichiryo | 00-NPX2-200 | 20–200 μL |
Micropipette P1000 | Nichiryo | 00-NPX2-1000 | 100–1000 μL |
Tips for micropipette P10 | STAR | RST-481LCRST | Sterile |
Tips for micropipette P200 | FUKAEKASEI | 1201-705YS | Sterile |
Tips for micropipette P1000 | STAR | RST-4810BRST | Sterile |
5 mL disporsable pipette | Greiner | 606180 | Sterile |
10 mL disporsable pipette | Greiner | 607180 | Sterile |
25 mL disporsable pipette | Falcon | 357535 | Sterile |
Hematocytometer | Sunlead Glass | A126 | Improved Neubeuer |
Microscope | Olympus | CKX53 | |
10 cm dishes | Falcon | 353003 | For tissue culture |
6-well plates | AGC Techno Glass | 3810-006 | For tissue culture |
Vortex mixer | Scientific Industries | Vortex-Genie 2 | |
Cell scrapers | Sumitomo Bakelite | MS-93100 | |
1.5 mL tubes | STAR | RSV-MTT1.5 | |
15 mL tubes | AGC Techno Glass | 2323-015 | |
50 mL tubes | AGC Techno Glass | 2343-050 | |
Centrifuges | TOMY | MX-307 | |
96-well plates | Greiner | 655061 | Not for tissue culture |
Plate reader | Molecular Devices | SpectraMax M2e | |
SDS–PAGE tanks | Nihon Eido | NA-1010 | |
Transfer tanks | Nihon Eido | NA-1510B | |
Gel plates (notched) | Nihon Eido | NA-1000-1 | |
Gel plates (plain) | Nihon Eido | NA-1000-2 | |
Silicon spacers | Nihon Eido | NA-1000-16 | |
17-well combs | Nihon Eido | Custom made | |
Binder clips | Nihon Eido | NA-1000-15 | |
5 mL syringe | Terumo | SS-05SZ | |
21G | Terumo | NN-2138R | |
Power Station 1000 VC | ATTO | AE-8450 | Power supply for SDS–PAGE and transfer |
Large weighing boats | Ina Optika | AS-DL | |
Plastic containers | AS ONE | PS CASE No.4 | 10 x 80 x 50 mm |
Rocking shaker | Titech | NR-10 | |
Styrene foam box | generic | The internal dimensions should fit one transfer tank (200 x 250 x 250 mm). | |
ImageQuant LAS-4000 | GE Healthcare | An imager equipped with a cooled CCD camera for detection of ECL |