Summary

富氧运动器械中慢性硅探针的植入及海马位细胞的记录

Published: October 11, 2017
doi:

Summary

我们描述了植入慢性硅探针的不同步骤, 并记录了老鼠体内的细胞, 这些小鼠在跑步头上固定在一个富含提示的跑步机上。

Abstract

了解大脑功能的一个重要条件是识别行为和细胞活性的相关性。硅探针是用于 large-scale 神经元活动的电生理记录的高级电极, 但其慢性植入的程序仍然不发达。已知海马位细胞的活动与动物在环境中的位置有关, 但其基本机制尚不清楚。为了研究地方细胞, 我们在这里描述了一系列的技术, 从制造设备的慢性硅探针植入到监测的地方现场活动在一个提示丰富的跑步机设备。一个微型驱动和帽子是由装配和紧固在一起 3 d 打印塑料零件。硅探针安装在微驱动器上, 清洗, 并涂上染料。第一次手术是为了修复老鼠头骨上的帽子。小地标是捏造的, 并附着在跑步机的皮带上。老鼠被训练在跑步机上运行头部固定。第二个手术是在海马内植入硅探针, 然后记录下宽带电生理信号。最后, 对硅探针进行恢复和清洗, 以便重新使用。分析的地方细胞活动在跑步机揭示了不同的地方领域的机制, 概述了该方法的好处。

Introduction

硅探针为电生理记录提供了几个好处, 包括事实他们是设计的以锋利的外形最小化组织损伤, 并且他们提出一个密集地被包装的录音站点的一个精确布局1, 234。它们用于研究不同物种的各种系统, 包括人类3,5,6, 具有不同的方法1,7。然而, 由于它们的成本、脆弱性以及慢性实验的简便方法缺乏8, 它们的经常性使用仍然相对有限。在3D 印刷技术的最新进展使定制设计的设备, 如微型驱动器和头部板, 使更容易处理这些微妙的电极。在第一步中, 我们将描述如何构建和使用我们为植入慢性硅探针而开发的一套工具14

虽然地方细胞通常是研究使用自由移动的动物在迷宫中运行, 最近他们也在虚拟环境中进行了15和在跑步机 apparatii9 (图 1A) 中进行了调查。这些实验方法提供的优势, 动物可以头部克制, 使使用2光子显微镜15, 补丁钳16, 和传感9,10,11技术更容易, 除了提供增强的控制动物行为和环境提示12。在第二步中, 我们将介绍训练小鼠和记录在跑步机设备中的细胞活动的程序。

Protocol

所描述的所有方法均已得到韩国科技研究院动物保育和使用委员会的批准. 1. 准备微驱动器和电极 组装微驱动器. 使用高分辨率3D 打印机打印微驱动器 (滑块、正文和外壳) 14 的各个部分。确保零件没有缺陷. 将滑块固定到带有螺钉的微驱动器体 (大小 000-120×1/4). 将螺母 (大小 000-120×5/64 十六进制) 焊接到螺…

Representative Results

一只老鼠被训练在两米长的皮带上运行, 没有提示 (图 1C)。在电极植入后, 一个新的相同长度的带, 但呈现3对线索安装在跑步机上, 为了生成 allocentric 空间表示12,14。宽带信号以3万赫兹的采样率记录, 使用250通道记录系统 (带有 USB 接口板和 custom-made Labview 接口的放大器板) 和两个硅探针 (图 1A…

Discussion

慢性记录的神经元活动是关键的了解神经过程, 如海马位场。我们的方法来执行慢性硅探针 implantantation 区别自己从其他方法7,18,19,20的事实是, 它是相对简单的恢复电极封装在实验的结束。虽然地方细胞通常是在自由移动的条件下进行研究的, 但跑步机设备不仅能极大地简化实验设计和数据分析, 还可?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国科学和技术研究所项目 (No. 2E26190 和 2E26170) 和人类前沿科学项目 (RGY0089/2012) 的支持。

Materials

Silicon Probe Neuronexus Buzsabi32 Recording electrode
Recording system Intantech RHD2132/RHD2000
3D printer Asiga Pico Plus 27 High resolution printer for micro-drive
3D printer Stratasys Mojo Lower resolution printer for hat components
Stereotaxic apparatus Kopf Model 963
Binocular microscope Leica M60
Treadmill apparatus We build them

Referências

  1. Schjetnan, A. G., Luczak, A. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. J Vis Exp. (56), (2011).
  2. Buzsaki, G. Large-scale recording of neuronal ensembles. Nat Neurosci. 7 (5), 446-451 (2004).
  3. Suner, S., Fellows, M. R., Vargas-Irwin, C., Nakata, G. K., Donoghue, J. P. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans Neural Syst Rehabil Eng. 13 (4), 524-541 (2005).
  4. Csicsvari, J., et al. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol. 90 (2), 1314-1323 (2003).
  5. Hochberg, L. R., et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442 (7099), 164-171 (2006).
  6. Okun, M., Lak, A., Carandini, M., Harris, K. D. Long Term Recordings with Immobile Silicon Probes in the Mouse Cortex. PLoS One. 11 (3), e0151180 (2016).
  7. Vandecasteele, M., et al. Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp. (61), e3568 (2012).
  8. Kipke, D. R., et al. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci. 28 (46), 11830-11838 (2008).
  9. Royer, S., et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci. 15 (5), 769-775 (2012).
  10. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale genetically targeted optical control of neural activity. Nat Neurosci. 8 (9), 1263-1268 (2005).
  11. Royer, S., et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci. 31 (12), 2279-2291 (2010).
  12. Geiller, T., Fattahi, M., Choi, J. S., Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat Commun. 8, 14531 (2017).
  13. Ylinen, A., et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 15 (1 Pt 1), 30-46 (1995).
  14. Battaglia, F. P., Sutherland, G. R., McNaughton, B. L. Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci. 24 (19), 4541-4550 (2004).
  15. Hazan, L., Zugaro, M., Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods. 155 (2), 207-216 (2006).
  16. Kadir, S. N., Goodman, D. F., Harris, K. D. High-dimensional cluster analysis with the masked EM algorithm. Neural Comput. 26 (11), 2379-2394 (2014).
  17. Lewicki, M. S. A review of methods for spike sorting: the detection and classification of neural action potentials. Network. 9 (4), R53-R78 (1998).
  18. Battaglia, F. P., et al. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. J Neurosci Methods. 178 (2), 291-300 (2009).
  19. Blumberg, M. S., Sokoloff, G., Tiriac, A., Del Rio-Bermudez, C. A valuable and promising method for recording brain activity in behaving newborn rodents. Dev Psychobiol. 57 (4), 506-517 (2015).
  20. Haiss, F., Butovas, S., Schwarz, C. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J Neurosci Methods. 187 (1), 67-72 (2010).
  21. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L., Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 56 (1), 43-57 (2007).
  22. Villette, V., Malvache, A., Tressard, T., Dupuy, N., Cossart, R. Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information. Neuron. 88 (2), 357-366 (2015).
  23. Ziv, Y., et al. Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci. 16 (3), 264-266 (2013).
  24. Danielson, N. B., et al. Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron. 90 (1), 101-112 (2016).
  25. Stark, E., Koos, T., Buzsaki, G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol. 108 (1), 349-363 (2012).
  26. Wu, F., et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng. 10 (5), 056012 (2013).
check_url/pt/56438?article_type=t

Play Video

Citar este artigo
Sariev, A., Chung, J., Jung, D., Sharif, F., Lee, J., Kim, S., Royer, S. Implantation of Chronic Silicon Probes and Recording of Hippocampal Place Cells in an Enriched Treadmill Apparatus. J. Vis. Exp. (128), e56438, doi:10.3791/56438 (2017).

View Video