Мы представляем протокол на модульный дизайн и производство интеллектуальных роботов, чтобы помочь научных и технических работников дизайн интеллектуальные роботы с специальных производственных задач на основе личных потребностей и индивидуальный дизайн.
Интеллектуальные роботы являются частью нового поколения роботов, которые способны ощутить окружающей среды, планировать свои собственные действия и в конечном итоге достичь их целей. В последние годы увеличилась зависимость от роботов как в повседневной жизни, так и в промышленности. Протокол, предложенные в этом документе описывается проектирование и производство обработки робота с алгоритмом интеллектуального поиска и функцию автономного идентификации.
Во-первых различные рабочие модули механически собираются завершить строительство платформы работы и установки робота манипулятора. Затем мы дизайн системы замкнутого цикла управления и стратегии управления двигателем четыре квадранта, с помощью отладки программного обеспечения, а также рулевого личность (ID), скорость передачи данных и других рабочих параметров, чтобы гарантировать, что робот достигает желаемого динамической производительность и низкое потребление энергии. Далее мы отладки датчик для достижения полидатчиковую fusion точно приобрести экологической информации. Наконец мы реализуем соответствующий алгоритм, который может признать успех функции робота для данного приложения.
Преимуществом этого подхода является его надежность и гибкость, как пользователи могут разрабатывать различные аппаратные строительных программ и использовать всеобъемлющий отладчик для реализации стратегии интеллектуального управления. Это позволяет пользователям устанавливать персональные требования, основанные на их потребностей с высокой эффективностью и надежностью.
Роботы являются сложными, интеллигентая(ый) машин, которые сочетают знание нескольких дисциплин, включая механики, электроники, управления, компьютеры, датчики и искусственного интеллекта 1,2. Все чаще роботы помощь или даже заменить людей на рабочем месте, особенно в промышленном производстве, из-за преимущества, которые обладают роботов в выполнении повторяющихся или опасных задач. Дизайн умный робот протокола в рамках нынешнего исследования на основе замкнутого цикла управления стратегии, в частности пути планирования на основе генетического алгоритма. Кроме того функциональные модули были строго разделены в3,4, которые могут заложить прочную основу для будущей оптимизации работы, так что роботы имеют сильного потенциала для модернизации.
Модульной реализации роботизированной платформы основывается главным образом на следующие методы: многомерный сочетание управления стратегия управления двигателем модуль5,6, и интеллигентая(ый) разведки на основе генетического алгоритма в модуле алгоритм оптимизации.
Мы используем двойной контроль замкнутого цикла двигателя постоянного тока и четыре квадранта мотор операции в модуле управления двигателем. Двойная скорость замкнутого цикла управления означает, что выход регулятора скорости служит входной регулятор тока, что позволяет контролировать текущие и крутящего момента двигателя. Преимуществом этой системы является, что крутящий момент мотора можно управлять в режиме реального времени на основе разницы между заданной скоростью и фактической скоростью. Когда разница между заданной и фактической скорости относительно большой, мотор крутящий момент увеличивается и скорость изменения скорости быстрее ехать скорость двигателя к заданное значение так быстро, как возможно, что делает для быстрого регулирования7, 8 , 9. и наоборот, когда скорость относительно недалеко от заданного значения, это может автоматически снизить крутящий момент двигателя, чтобы избежать чрезмерной скорости, позволяя скорость для достижения заданного значения относительно быстро без ошибок6, 10. эквивалентного времени константа электрического текущего цикла является относительно небольшим, четыре квадранта мотор11,12 может реагировать более быстро подавить влияние вмешательства, когда система является вмешательство извне. Это позволяет улучшить стабильность и анти помех способность системы.
Мы выбираем интеллигентая(ый) генетической оптимизации алгоритма с высоким КПД, основываясь на результатах моделирования, запустить в MATLAB. Генетический алгоритм является стохастических параллельного поиска алгоритм, основанный на теории естественного отбора в генетике. Он представляет собой эффективный метод для поиска глобального оптимальное решение в отсутствие любой исходной информации. Он рассматривает набор решений проблемы как население, тем самым увеличивая качество решения через непрерывный отбор, кроссовер, мутации и других генетических операций. Отношении пути планирования интеллектуальные роботы трудность возникает в результате недостаточно первоначальной информации, сложных средах и нелинейности. Генетические алгоритмы лучше способны решить проблему пути планирования, поскольку они обладают глобальной оптимизации способности, сильная приспособляемость и надежности при решении нелинейных задач; Существует никаких конкретных ограничений на этой проблеме; процесс вычисления прост; и есть никаких особых требований к поиск пространства 13,14.
В этой статье мы разработали типа умный робот, который может быть построен автономно. Мы применяем предлагаемого интеллектуальный поиск алгоритма и автономных признание путем объединения нескольких программ с оборудованием. В протоколе мы представили основные подходы для настройки ?…
The authors have nothing to disclose.
Авторы хотели бы выразить свою признательность г-н Yaojie он за его содействие в проведении экспериментов, сообщается в настоящем документе. Эта работа частично поддержали Фонд национального естественных наук Китая (№ 61673117).
structural parts | UPTECMONYH HAR | L1-1 | |
structural parts | UPTECMONYH HAR | L2-1 | |
structural parts | UPTECMONYH HAR | L3-1 | |
structural parts | UPTECMONYH HAR | L4-1 | |
structural parts | UPTECMONYH HAR | L5-1 | |
structural parts | UPTECMONYH HAR | L5-2 | |
structural parts | UPTECMONYH HAR | U3A | |
structural parts | UPTECMONYH HAR | U3B | |
structural parts | UPTECMONYH HAR | U3C | |
structural parts | UPTECMONYH HAR | U3F | |
structural parts | UPTECMONYH HAR | U3G | |
structural parts | UPTECMONYH HAR | U3H | |
structural parts | UPTECMONYH HAR | U3J | |
structural parts | UPTECMONYH HAR | I3 | |
structural parts | UPTECMONYH HAR | I5 | |
structural parts | UPTECMONYH HAR | I7 | |
structural parts | UPTECMONYH HAR | CGJ | |
link component | UPTECMONYH HAR | LM1 | |
link component | UPTECMONYH HAR | LM2 | |
link component | UPTECMONYH HAR | LM3 | |
link component | UPTECMONYH HAR | LM4 | |
link component | UPTECMONYH HAR | LX1 | |
link component | UPTECMONYH HAR | LX2 | |
link component | UPTECMONYH HAR | LX3 | |
link component | UPTECMONYH HAR | LX4 | |
Steering gear structure component | UPTECMONYH HAR | KD | |
Steering gear structure component | UPTECMONYH HAR | DP | |
Infrared sensor | UPTECMONYH HAR | E18-B0 | Digital sensor |
Infrared Range Finder | SHARP | GP2D12 | |
Gray level sensor | SHARP | GP2Y0A02YK0F | |
proMOTION CDS | SHARP | CDS 5516 | The robot steering gear |
motor drive module | Risym | HG7881 | |
solder wire | ELECALL | 63A | |
terminal | Bright wire | 5264 | |
motor | BX motor | 60JX | |
camera | Logitech | C270 | |
Drilling machine | XIN XIANG | 16MM | Please be careful |
Soldering station | YIHUA | 8786D | Be careful to be burn |
screwdriver | EXPLOIT | 043003 | |
Tweezers | R`DEER | RST-12 |