We report a small hairpin RNA (shRNA) and next generation sequencing-based protocol for identifying regulators of X-chromosome inactivation in a murine cell line with firefly luciferase and hygromycin resistance genes fused to the methyl CpG binding protein 2 (MeCP2) gene on the inactive X chromosome.
Forward genetic screens using reporter genes inserted into the heterochromatin have been extensively used to investigate mechanisms of epigenetic control in model organisms. Technologies including short hairpin RNAs (shRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) have enabled such screens in diploid mammalian cells. Here we describe a large-scale shRNA screen for regulators of X-chromosome inactivation (XCI), using a murine cell line with firefly luciferase and hygromycin resistance genes knocked in at the C-terminus of the methyl CpG binding protein 2 (MeCP2) gene on the inactive X-chromosome (Xi). Reactivation of the construct in the reporter cell line conferred survival advantage under hygromycin B selection, enabling us to screen a large shRNA library and identify hairpins that reactivated the reporter by measuring their post-selection enrichment using next-generation sequencing. The enriched hairpins were then individually validated by testing their ability to activate the luciferase reporter on Xi.
One the most common forms of hereditary mental impairment in females, Rett syndrome, is caused by heterozygous mutations in MeCP2, an X-chromosome gene that encodes a protein essential for normal neuronal function1. A potential approach to treating this disorder would be reactivation of the wild-type MeCP2 allele on the Xi, as restoration of MeCP2 expression was shown to reverse neurological deficits in a mouse model of this disease1,2,4. However, epigenetic silencing of one of the two X chromosomes in female cells is tightly maintained throughout the lifespan of an organism3,4, and robust reactivation of an Xi gene would likely require a major disruption in multiple epigenetic regulatory pathways.
To identify factors necessary for maintenance of MeCP2 silencing, we first developed a transgenic mouse model carrying a MeCP2-luciferase- hygromycin resistance gene fusion (MeCP2-LUC-HR) on one of the two X chromosomes (XMeCP2-LUC-HR/XMeCP2)5. Although the MeCP2 expressed from the fusion construct proved to be unstable and resulted in a loss of function, phenotypically mimicking MeCP2 deletion in hemizygous males (XMeCP2-LUC-HR/Y), the expression of the reporter genes was readily detectable in a pattern consistent with the expression of endogenous MeCP25. We then generated immortalized fibroblast clones with the construct on either inactive or active X-chromosome, and confirmed that former expressed wild type MeCP2 and not the reporter construct; the inverse was true for the latter. When exposed to a DNA demethylating agent known to abrogate gene silencing, 5-azacytidine (5-AZA), cells with the reporter on the Xi ("reporter cells") gained activity in a bioluminescence assay, indicating that our construct could be reactivated and therefore used for genetic screening.
We next developed a high-throughput genetic screen for regulators of MeCP2 silencing. The reporter cell line was first infected with a retroviral library containing >60,000 different shRNAs targeting >25,000 genes throughout the mouse genome5,6, and then subjected to hygromycin B selection. Hairpin frequency was compared in pre- and post-selection samples using next generation sequencing, as reporter reactivation conferred growth advantage under hygromycin B selection and resulted in enrichment of responsible hairpins. Using this approach, we identified 30 genes implicated in MeCP2 silencing, and subsequently confirmed the findings by transducing the reporter cells with individual hairpins and measuring their luciferase activity.
All steps involving animals were carried out using protocols approved by the Fred Hutchinson Cancer Research Center Institutional Animal Care and Use Committee (IACUC). No reagents used here are known to pose significant human health risks except for 5-azacytidine (5-AZA).
1. Generating a reporter cell line with MeCP2-LUC-HR transgene on the Xi
2. Screening the library for reactivation using hygromycin B selection
3. Validating the identified hairpins ("hits")
Mouse tendon fibroblasts were harvested from a previously described XMeCP2-LUC-HR/XMeCP2 female mouse, immortalized by retroviral transduction of E6 and E7 oncogenes from HPV-16 virus7, cloned using limiting dilution, and tested for luciferase activity and expression of wild-type MeCP2 protein (Figure 1A and 1B). Luciferase activity was robust if the reporter was on Xa, and undetectable if on Xi; the native MeCP2 expression exhibited a reciprocal pattern. We selected a clone with no luciferase activity (Xi-8) and a clone with robust activity (Xa-3) for further experiments. When Xi-8 cells were treated with 5-AZA, a dose-dependent induction in luciferase activity was observed (Figure 1C).
Sensitivity of Xi-8 and Xa-3 cells to hygromycin B was tested by performing 3 and 6 day-long selections. As expected from the expression pattern of the luciferase reporter, Xi-8 cells were more sensitive to hygromycin B than Xa-3 cells, even though the latter exhibited sensitivity to higher doses (Figure 2A). After a 1:100 mix of Xa-3 to Xi-8 cells was exposed to different concentrations of hygromycin B, a time-dependent increase in luciferase activity was observed, indicating successful competition of Xa-3 cells over Xi-8 cells (Figure 2B). Dose and duration of hygromycin B selection were chosen for further experiments based on preferential inhibition of Xi-8 over Xa-3 cells.
Four independent screens were performed to identify regulators of MeCP2 silencing using the Xi-8 cell line and an Open Biosystems miR-30- based shRNA library containing 64,159 different hairpins cloned into a MSCV-shRNA-pgk-Puro-ires-GFP retroviral vector. In each screen, twenty 10 cm plates were infected with pooled shRNAs, targeting approximately 100-fold coverage of the library. Hygromicin B was conducted for 6 days, until small acellular patches were observed; the cells continued to die for additional 24 to 48 hours. When recovered, the cells were harvested for DNA extraction using a phenol-chloroform technique. The total DNA yield per screen was around 20 µg/plate, which was pooled and divided between 100 PCR reactions using primers designed to amplify half-hairpins. The PCR products were then bead-purified and subjected to high throughput sequencing.
Pre- and post-selection samples were compared to determine hairpin enrichment, as we expected that any hairpin present at elevated levels in the post-selection sample targeted genes that reactivated Xi and thus conferred hygromycin resistance. Only hairpins enriched in at least 2 of the four screens were considered for validation. The most enriched hairpins in all replicates of our screen were four hairpins targeting XIST, consistent with its crucial role in XCI11.
The validation part of the screen was carried out by individually testing the hairpins that registered as hits for activation of the luciferase reporter in Xi-8 cells. Although the screen was carried out using an MSCV-based retroviral library, the validation was carried out using a lentiviral vector (individual pGIPZ clones with shRNA) to avoid possible detection of retrovirus-induced artifacts.
Each of the candidate genes was targeted by at least two different hairpin sequences, and the knockdown of the target gene was verified by real- time quantitative PCR (RT-qPCR). By assaying up to 1 x 106 cells in 6-well format and decreasing the background luminescence (Figure 2C), we were able to detect very low-frequency reactivation events, which we estimated to be in the 1:20,000 range.
Further analysis using individual hairpins led to the identification of 30 genes whose knockdown resulted in reactivation of the reporter on the Xi. The median magnitude of luminescence for these 30 genes was 2.8-fold above the baseline, which was further amplified to 7.1-fold following 5-AZA treatment. The same hairpins were retested, in conjunction with 5-AZA, with the Xa-3 cells to confirm re-expression of wild type MeCP2 from the Xi. This was achieved by performing RT-qPCR using primers designed to amplify only the wild type transcript of MeCP2.
Figure 1. Isolation of clones with the MeCP2-Luc-HR reporter gene on the Xi.
A) Representative firefly luciferase assay on immortalized tendon fibroblasts clones (1-9). Primary fibroblasts from non-transgenic (NT) and transgenic heterozygous female (F) were used as negative and positive controls, respectively. B) Representative Western blot showing MeCP2 protein expression from the cells in (A). Note that luciferase activity (Figure 1A) and MeCP2 expression exhibit reciprocal expression pattern. C) Induction of firefly luciferase activity in Xi-8 cells with 5-AZA. Xa-3 cells, with the reporter gene on the Xa, serve as a positive control. Please click here to view a larger version of this figure.
Figure 2. Characterization of the hygromycin resistance in Xi-8 and Xa-3 cells.
A) Relative growth of Xi-8 and Xa-3 cells treated with different hygromycin B regimens (3D = 3 days; 6D = 6 days), as compared to untreated cells. B) Luciferase activity enrichment after exposing a total of 10,000 Xa-3 and Xi-8 cells (mixed in 1:100 ratio) to hygromicin B (25 µg/mL) for indicated number of days. Post-exposure luciferase activity was divided by the pre-exposure level to calculate enrichment. C) Firefly luciferase activity in Xi-8 cells, assayed in 96- and 6-well format, with and without 5-AZA (10 µM). Non-transgenic (NT) fibroblasts were used as a negative control. 5-AZA increased the luciferase activity 7.2-and 86-fold over the baseline in 96- and 6-well format, respectively. (N = 3, *p < 0.001, **p < 0.0001 by Student's t- test comparing 5-AZA treated and untreated Xi-8 cells.) Please click here to view a larger version of this figure.
In our recent study6, we generated a murine cell line with luciferase and hygromycin resistance genes fused to MeCP2 on the Xi, and transduced it with a library of >60,000 shRNAs targeting >25,000 genes. We found 30 genes whose knock-down conferred survival advantage under hygromycin B selection, suggesting their role in control of MeCP2 and X-chromosome silencing. These results were validated by transducing the reported cell line with individual hairpins and assessing reactivation of the silent luciferase reporter.
The finding that the top four hairpins in all replicates of our screen targeted XIST provided a strong internal validation for our method, given the pivotal role of XIST in XCI11. Aside from the TGFβ superfamily, whose regulatory role in XCI had not been previously described, the other identified genes all belonged to functional families with ties to epigenetic regulation, thus serving as an additional validation for our method12,13,14. Furthermore, we also detected 4 out of 13 genes previously identified in a different screen, using a CMV promoter-driven GFP randomly inserted on the Xi15.
Establishing the suitable dose and duration of hygromycin B selection was crucial in optimizing the screening conditions. The sensitivity of our cell line was highly dependent on seeding density, and was adversely affected by retroviral infection. Increased doses or length of selection also inhibited the growth of cells with the reporter on Xa, whereas milder selection lowered the sensitivity for hairpin enrichment. Multiple hygromycin B dosing regimens and reporter cell seeding densities were thus tested before the final screening. Moreover, although the MSCV retroviral vector in our shRNA library provided an opportunity to use puromycin selection and enrich for successfully transduced cells, puromycin was not used in our experiments, as the sequential use of puromycin and hygromyin B resulted in excessive toxicity, even after appropriate dose de-escalation of both antibiotics.
All the hairpins identified in our study also reactivated the silent luciferase reporter, albeit to a more modest degree. Detection of these infrequent events was enabled by the high sensitivity of our screen, which we estimated, based on testing admixtures of Xi and Xa cells, to be one reactivation event in 2 x 104 cells. Such low levels of reactivation, increased with co-application of 5-AZA, attest to previously described difficulties in disrupting tight transcriptional control of XCI12,13,16,17, and imply that the disruption of multiple regulatory mechanisms would be needed to achieve significant reactivation.
Of note, all 30 hairpins identified in our screen also reactivated a CMV-driven reporter gene located at a different X-chromosome locus, indicating their broader impact on Xi de-repression. Further studies are needed to test whether MeCP2-specific "reactivators" exist, as their pharmacologic or genetic manipulation could prove extraordinarily useful in treating the Rett syndrome.
Our screening system offers several advantages over the previously described reporters used for X-chromosome reactivation screens12,17. Instead of being driven by a CMV promoter, our reporter cassette is knocked in at the C-terminus of MeCP2 and is thus driven by the native X-linked promoter. This design can help identify MeCP2 locus-specific regulators, more relevant in the context of Rett syndrome research, with a caveat that the findings in immortalized fibroblasts should be recapitulated in neurons, the desired site of MeCP2 reactivation. The use of a hygromycin resistance gene enables positive selection of reactivation events and robustly increases the screen sensitivity. Moreover, the cassette containing hygromycin resistance and firefly luciferase genes enables both large-scale screening using positive selection with hygromycin B, and testing/screening individual hairpins using the luciferase reporter.
In summary, we report a robust and sensitive genetic screening method for identification of regulators of MeCP2 and X-chromosome silencing in mammalian cells. This methodology could be adapted for screening small interfering RNAs (siRNAs), CRISPR, or small molecules. Such assays could prove useful in establishing therapeutic approaches that rely on reactivating the functional allele of a silent gene, such as in the case of Rett syndrome.
The authors have nothing to disclose.
We thank Ross Dickins of the University of Melbourne for graciously providing the shRNA library used in the screen. This work was funded by the Rett Syndrome Research Trust (A.B.).
293FT Cell Line | Invitrogen | R700-07 | |
5-Azacytidine | Sigma | A2385-100MG | |
Agencourt AMPure XP | Beckman-Coulter | A63881 | |
Anti-MECP2 antibody | Millipore | 07-013 | |
Collagenase | Sigma | C2674-1G | |
Corning 96-Well Solid White Polystyrene Microplates | Fisher Scientific | 07-200-336 | |
Dulbecco's Modified Eagle Medium | Gibco | 11965-092 | |
Expression Arrest microRNA-adapted Retroviral Vector (pMSCV) | Open Biosystems | EAV4679 | |
Expression Arrest pSM2 Retroviral shRNAmir library | Open Biosystems | RMM3796 | |
Fetal Bovine Serum | Fisherbrand | 03-600-511 | |
HiSeq 2500 | Illumina | SY–401–2501 | Or equivalent |
Hygromycin B | Calbiochem | 400051-1MU | |
Lipofectamine 2000 | Invitrogen | 11668-019 | |
Bright-Glo Luciferase Assay System | Promega | E2610 | Homogenous Assay for Screening Colonies |
Luciferase Assay System | Promega | E4530 | Non-Homogenous Assay for Testing Individual Hairpins |
Luminometer TopCount NXT | Perkin Elmer | N/A | Or similar luminometer |
MiSeq Reagent Kit v2 | Illumina | MS-102-2001 | Use kit compatible with your equipment |
Opti-MEM | Gibco | 31985-070 | |
Penicillin-Streptomycin | Gibco | 15140-122 | |
pMD2.G | Addgene | #12259 | VSV-G envelope vector |
Polybrene | Sigma | TR-1003-G | |
Polyethylenimine | Polysciences | 23966-1 | |
psPAX2 | Addgene | #12260 | Packaging vector |
Puromycin | Gibco | A11138-02 | |
Trypsin-EDTA (0.05%), phenol red | Gibco | 25300-054 |