Summary

警惕啮齿动物的经颅电脑刺激

Published: November 02, 2017
doi:

Summary

本协议描述了一个永久性的 epicranial 电极插座和植入的啮齿动物的胸电极的外科设置。通过把第二个电极插入插座, 不同类型的经颅电脑刺激可以通过完整的头骨传递到警报动物的马达系统。

Abstract

经颅电脑刺激可以调节人和啮齿动物的皮质兴奋性和可塑性。人类最常见的刺激形式是经颅直流电刺激 (tDCS)。不常使用, 经颅交变电流刺激 (可) 或经颅随机噪声刺激 (tRNS), 一种特定形式的可使用电流在预定的频率范围内随机应用。在人类的非侵入性电脑刺激研究的增加, 无论是为实验和临床目的, 已经产生了对动物的基本的, 机械的, 安全研究的增加的需要。本文介绍了一个模型, 经颅电脑刺激 (附加费), 通过完整的头骨目标的马达系统警报啮齿动物。该协议提供了 step-by 的步骤说明的外科设置一个永久性的 epicranial 电极插座结合一个植入的柜台电极在胸部。通过放置一个刺激电极到 epicranial 插座, 不同的电刺激类型, 可比较 tDCS, 可, 和 tRNS 在人, 可以交付。并介绍了警示啮齿动物的实用步骤。根据实验需要, 可选择应用电流密度、刺激持续时间和刺激类型。讨论了这种设置的注意事项、优点和缺点, 以及安全性和耐受性方面。

Introduction

经颅的电流对大脑的管理已被用于研究大脑功能和修改行为。最近, 应用直接电流, 或较少频繁交流电流 (可和 tRNS), 通过使用两个或更多的电极 (阳极 (s) 和阴极 (s), 非通过完整的头骨, 获得了科学和临床的兴趣。特别是, tDCS 已被用于33200多个疗程的健康主题和精神病患者和神经精神疾病, 并已成为一个安全和方便, cost-effective 床边应用, 有可能的治疗潜力以及长期行为效果1。这清楚地产生了对机械研究, 包括安全方面的需求和科学兴趣的增加。本文着重介绍最常用的刺激形式, tDCS。

跨物种, tDCS 调节皮质兴奋性和突触可塑性。兴奋性的变化已报告为极性依赖性改变自发性神经元的射击率在大鼠和猫2,3,4, 或作为电机诱发电位的变化, 在人类和小鼠 (两个在阳极以后增加了并且减少了阴极 tDCS: 人5,6;鼠标7)。阳极 DCS 增加了运动皮层或海马突触的突触效果在体外刺激或长期增强后的几个小时, 当共同与一个特定的弱突触输入或当给定的可塑性诱导刺激8,9,10,11,12。根据训练, 刺激对运动或认知训练成功的好处经常被显露, 只有当 tDCS 是共同与培训8,13,14,15。虽然这些先前的发现主要归因于神经元的功能, 但应该指出的是, 神经细胞细胞 (胶质) 也可能有助于 tDCS 的功能作用。例如, 在警报小鼠的阳极 tDCS 中, 星细胞内钙水平增加了16。同样, 阳极 tDCS 的电流密度低于阈值神经诱发剂量依赖性激活小胶质细胞17。然而, tDCS 神经元-胶质细胞相互作用的调节需要进一步的具体研究。

一起, 动物研究清楚地推进我们的理解 tDCS 的调节作用对兴奋性和可塑性。然而, 在人类 tDCS 研究发表的指数增长中, 有一个 “反向平移间隙” 可观察到, 与在体外体内动物模型。此外, 在研究实验室 (从透皮到 epicranial 刺激) 的高变异性中执行了啮齿动物污水附加费模型, 报告的刺激程序往往不完全透明, 阻碍了可比性和可基础研究数据以及结果解释。

在这里, 我们详细描述了一项经颅脑部刺激设置的外科实施, 针对初级运动皮层, 它允许翻译的人 tDCS 条件, 同时尽量减少变异性, 并允许重复的刺激没有阻碍行为。给出了警报大鼠后续附加费的 step-by 步骤协议。讨论了安全应用于警戒啮齿动物的方法和概念方面。

Protocol

对于涉及动物的研究, 在开始实验之前必须获得相关的 (具体国家的) 批准。这里报告的所有动物实验都是按照欧盟指令 2010/63/欧盟、更新的德国动物保护法 (和 #34; Tierschutzgesetz 和 #34;) 2013年7月, 以及2013年8月更新的德国动物研究条例进行的。地方当局和 #34 批准了动物议定书; 弗赖堡和 #34 区域理事会动物实验委员会; 和 #34; 大学医学中心动物实验委员会弗莱堡和 #34;. 1. 准备用…

Representative Results

在警报啮齿类动物的可靠重复附加费的设置的被描述的实施可以容易地集成入机械实验、剂量反应研究或者实验包括行为任务。到目前为止, 从动物研究中使用 (无创性) 污水附加费的数据可比, 由于实验室之间的工商业污水附加费刺激的变化和刺激参数的差异 (例如,各种电流密度的应用在与人类的应用相比过高的高等级)。因此, 动物研究在工商业污水附加费方面的?…

Discussion

这项协议描述了典型的材料和程序步骤的外科实现永久附加费的设置, 以及随后的刺激警报啮齿动物。在准备一项啮齿动物试验的过程中, 几个方法学方面 (安全和耐受性工商业污水附加费, 结果参数) 以及概念方面 (与人类状况的可比性, 对特定大脑刺激的预期效果区域) 需要加以考虑。从方法论的角度来看, 颅内的手术设置与植入的胸部计数器电极是有利的纵向研究, 因为它允许应用在警报, 自由移…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了德国研究基金会 (DFG RE 2740/3-1) 的支持。我们感谢弗兰克 Huethe 和托马斯 nther 的 in-house 生产 custom-made 工商业污水附加费和 DC 刺激。

Materials

Softasept N B. Braun Melsungen AG,
Melsungen, Deutschland
3887138 antiseptic agent
Ethanol 70 % Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland T913.1
arched tip forceps FST Fine science tools, Heidelberg, Deutschland 11071-10
Iris Forceps, 10cm, Straight, Serrated World Precision Instruments, Inc, Sarasota, FL, USA, Inc, Sarasota, FL, USA 15914
Scalpel Handle #3, 13cm World Precision Instruments, Inc, Sarasota, FL, USA, Inc, Sarasota, FL, USA 500236
Standard Scalpel Blade #10 World Precision Instruments, Inc, Sarasota, FL, USA, Inc, Sarasota, FL, USA 500239
Zelletten cellulose swabs Lohmann und Rauscher, Neuwied, Deutschland 13349 5 x 4 cm 
Isoflurane AbbVie Deutschland GmbH & Co N01AB06
Iris Scissors, 11.5cm, Straight World Precision Instruments, Inc, Sarasota, FL, USA, Inc, Sarasota, FL, USA 501758 small scissors
cotton swab/cotton buds Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland EH12.1 Rotilabo
Kelly Hemostatic Forceps, 14cm, Straight World Precision Instruments, Inc, Sarasota, FL, USA, Inc, Sarasota, FL, USA 501241 surgical clamp
electrode plate (platinum) custom made Wissenschaftliche Werkstatt Neurozentrum Uniklinik Freiburg, Deutschland 10×6 mm, 0.15 mm thickness
insulated copper strands (~1 mm diameter) Reichelt elektronik GmbH & Co. KG, Sande, Germany LITZE BL electrode cable
Weller EC 2002 M soldering station Weller Tools GmbH, Besigheim, Germany EC2002M1D
Iso-Core EL 0,5 mm FELDER GMBH Löttechnik, Oberhausen, Deutschland 20970510 lead free solder
MERSILENE Polyester Fiber Suture Johnson & Johnson Medical GmbH, Ethicon Deutschland, Norderstedt, Germany R871H nonabsorbable braided suture, 4-0
Histoacryl B. Braun Melsungen AG,
Melsungen, Deutschland
9381104 cyanoacrylate
Ketamin 10% Medistar GmbH, Germany n/a anesthetics
Rompun 2% (Xylazine) Bayer GmbH, Germany n/a anesthetics

Referências

  1. Bikson, M., et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 9 (5), 641-661 (2016).
  2. Bindman, L. J., Lippold, O. C., Redfearn, J. W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 172, 369-382 (1964).
  3. Gartside, I. B. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature. 220 (5165), 382-383 (1968).
  4. Purpura, D. P., McMurtry, J. G. Intracellular activities and potential changes during polarization of motor cortex. Neurophysiol. 28 (1), 166-185 (1965).
  5. Nitsche, M., Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 527 (Pt 3), 633-639 (2000).
  6. Nitsche, M. A., Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 57 (10), 1899-1901 (2001).
  7. Cambiaghi, M., et al. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neuro. 31 (4), 704-709 (2010).
  8. Fritsch, B., et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 66 (2), 198-204 (2010).
  9. Ranieri, F., et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 107 (7), 1868-1880 (2012).
  10. Kronberg, G., Bridi, M., Abel, T., Bikson, M., Parra, L. C. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul. 10 (November), 51-58 (2016).
  11. Sun, Y., et al. Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol. 80 (2), 233-246 (2016).
  12. Podda, M. V., et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep. 6, 22180 (2016).
  13. Reis, J., Fritsch, B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr opin Neurology. 24 (6), 590-596 (2011).
  14. Buch, E. R., et al. Effects of tDCS on motor learning and memory formation a consensus and critical position paper. Clin Neurophysiol. 128 (4), 589-603 (2017).
  15. Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., Fritsch, B. Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cerebral cortex. 25 (1), 109-117 (2015).
  16. Monai, H., et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Comm. 7, 11100 (2016).
  17. Gellner, A. -. K., Reis, J., Fritsch, B. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation. Front Cell Neurosci. 10, 188 (2016).
  18. Takano, Y., Yokawa, T., Masuda, A., Niimi, J., Tanaka, S., Hironaka, N. A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neurosci Lett. 491 (1), 40-43 (2011).
  19. Islam, N., Moriwaki, A., Hattori, Y., Hori, Y. Anodal polarization induces protein kinase C gamma (PKC gamma)-like immunoreactivity in the rat cerebral cortex. Neurosci Res. 21, 169-172 (1994).
  20. Islam, N., Aftabuddin, M., Moriwaki, A., Hattori, Y., Hori, Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 684 (2), 206-208 (1995).
  21. Rohan, J. G., Carhuatanta, K. A., McInturf, S. M., Miklasevich, M. K., Jankord, R. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation. J Neurosci. 35 (37), 12824-12832 (2015).
  22. Wachter, D., et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol. 227 (2), 322-327 (2011).
  23. Koo, H., et al. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats. Rest Neurol Neurosci. 34 (5), 859-868 (2016).
  24. Liebetanz, D., et al. After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression. Neurosci Lett. 398 (1-2), 85-90 (2006).
  25. Fregni, F., et al. Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression. Exp Neurol. 204 (1), 462-466 (2007).
  26. Cambiaghi, M., et al. Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neurosci. 185, 161-165 (2011).
  27. Dockery, C. A., Liebetanz, D., Birbaumer, N., Malinowska, M., Wesierska, M. J. Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem. 96 (3), 452-460 (2011).
  28. Faraji, J., Gomez-Palacio-Schjetnan, A., Luczak, A., Metz, G. A. Beyond the silence: Bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res. 253, 78-89 (2013).
  29. Pikhovych, A., et al. Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain. Stem Cells In. , 1-10 (2016).
  30. Rueger, M. A., et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PloS one. 7 (8), e43776 (2012).
  31. Liebetanz, D., Koch, R., Mayenfels, S., König, F., Paulus, W., Nitsche, M. A. Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiol. 120 (6), 1161-1167 (2009).
  32. Yoon, K. J., Oh, B. -. M., Kim, D. -. Y. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 1452, 61-72 (2012).
  33. Spezia Adachi, L. N., et al. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electrical brain stimulation. Exp Brain Res. 233 (5), 1377-1389 (2015).
  34. Jackson, M. P., et al. Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats. Brain, behavior, and immunity. , (2017).
  35. Ordek, G., Groth, J. D., Sahin, M. Differential effects of ketamine/xylazine anesthesia on the cerebral and cerebellar cortical activities in the rat. J Neurophysiol. 109 (5), 1435-1443 (2013).
  36. Sykes, M., et al. Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies. Front Neural Circ. 10, 80 (2016).
  37. Zhang, D. X., Levy, W. B. Ketamine blocks the induction of LTP at the lateral entorhinal cortex-dentate gyrus synapses. Brain Res. 593 (1), 124-127 (1992).

Play Video

Citar este artigo
Fritsch, B., Gellner, A., Reis, J. Transcranial Electrical Brain Stimulation in Alert Rodents. J. Vis. Exp. (129), e56242, doi:10.3791/56242 (2017).

View Video