Summary

大鼠电癫痫发作与海马的分离检测突触后密度蛋白的变化

Published: August 15, 2017
doi:

Summary

电癫痫 (ECS) 是一种电治疗严重抑郁症的实验动物模型。ECS 全球刺激海马活动, 导致突和突触可塑性。在这里, 我们描述的方法的 ECS 诱导大鼠和亚细胞分型的海马, 以检查癫痫诱导的变化, 突触蛋白。

Abstract

电癫痫 (ECS) 是一种实验动物模型的电治疗, 最有效的治疗严重抑郁症。在低死亡率和神经元死亡的挛癫痫的诱导下, 是一种广泛应用的筛选抗药物的模型。在这里, 我们描述一个 ECS 感应方法, 其中一个简短的55毫安电流是交付 0.5 s 到雄性大鼠 200-250 克重量通过耳夹电极。这种双边刺激产生的阶段 4-5 挛癫痫发作持续了大约十年代。在急性或慢性 ECS 停止后, 大多数老鼠恢复了与假 “无癫痫” 大鼠行为的区别。由于 ECS 在全球范围内提升了大脑活动, 它也被用来检测突触蛋白的活动依赖性的变化及其对突触强度的影响, 使用多种方法。特别是, 突触后密度 (PSD) 与西方印迹结合的亚细胞分馏允许在这个专门的突触结构中定量地测定突触蛋白的丰度。与以前的分馏方法相比, 需要大量的啮齿动物大脑, 我们这里描述了一个 small-scale 分离方法, 以隔离 PSD 从海马的单一大鼠, 没有蔗糖梯度离心。利用这种方法, 我们发现分离的 PSD 分数含有突触后的膜蛋白, 包括 PSD95、GluN2B 和 GluA2。前标记突和可溶性细胞质蛋白α-蛋白被排除在 psd 的分数, 表明成功的 psd 隔离。此外, 慢性 ECS 降低 GluN2B 表达在 psd, 表明我们的 small-scale psd 分馏方法可用于检测的变化, 海马 psd 蛋白从一大鼠后, 遗传, 药理, 或机械治疗.

Introduction

电疗法已被用于治疗抑郁症患者, 包括严重的耐药抑郁症, 双相抑郁症, 帕金森氏病和精神分裂症1,2。在这种治疗中, 癫痫发作是由电刺激传递给麻醉病人的头部通过 epicranial 电极1,2,3。重复性管理的 ECS 已临床有益的耐药抑郁症的疾病1,2,3。然而, 确切的机制的基础上长期疗效的抗抑郁药物的人仍然难以捉摸。ECS 是一种电治疗的动物模型, 广泛用于研究其治疗机制。在啮齿类动物中, 急性 ecs 和慢性 ecs 治疗促进了海马的成人神经发生, 并重组了神经元网络4,5, 这很可能有助于提高认知灵活性。此外, 全球范围内的大脑活动的提升改变了大量的成绩单, 如大脑衍生神经因子6, 和多种蛋白质, 包括代谢谷氨酸受体 17和 n-甲基-d-天门冬氨酸(NMDA) 型谷氨酸受体亚基7。这些变化涉及调解长期修改突触数, 结构和强度在海马7,8,9

在 ECS 模型中, 通过 stereotaxically 植入电极、角膜电极或耳电极将电刺激传递给啮齿动物, 以唤起全身强直-挛发作10,11。立体定向植入电极涉及脑部手术, 需要很大的时间来提高实验者的手术技能, 以减少伤害。较少侵入性角膜电极可引起角膜磨损和干燥, 需要麻醉。耳夹电极的使用绕过这些限制, 因为它们可以用于啮齿目动物没有手术或麻醉, 并造成最小的伤害。事实上, 我们发现, 目前交付给清醒大鼠通过耳夹电极可靠地诱导阶段4-5 挛发作和改变突触蛋白在其海马10

为了研究在啮齿动物的特定脑区内的突触蛋白诱导丰度, 选择最适合于它们的检测和定量的实验方法是非常重要的。亚细胞分馏的大脑允许的可溶性胞浆蛋白的粗分离;膜蛋白;细胞界限蛋白;甚至蛋白质的特殊亚细胞结构, 如 PSD12,13,14。PSD 是一个稠密和组织良好的亚细胞域的神经元, 其中突触蛋白高度集中在和附近的突触膜12,13,15。psd 的分离是有用的研究突触蛋白丰富的 psd, 因为动态变化的丰度和功能的突触后的谷氨酸受体, 支架蛋白, 信号转导蛋白在 psd12,15,16,17与突触可塑性和在几个神经紊乱中观察到的 synaptopathy 相关,17,18。以前的亚细胞分馏法用于纯化 PSD 涉及的蔗糖梯度的差异离心分离的洗涤剂不溶性分数从大脑的粗膜分数14,19. 这一传统方法的主要挑战是它需要大量的啮齿动物的大脑14,19。10-20 啮齿目动物的制备隔离 PSD 的每一次治疗需要大量的成本和时间的投资, 并没有实际可行的, 如果有很多的治疗。

为了克服这一挑战, 我们已经采用了一种简单的方法, 直接分离 psd 分数, 没有蔗糖梯度离心20,21, 并将其修改为适用于单鼠海马的 psd 隔离大脑.我们的 small-scale psd 分馏方法的产量约 30-50 µg 的 psd 蛋白从2海马, 足以用于几个生物化学的化验, 包括沉淀和西部印迹。西方印迹表明, 我们的方法成功地分离 PSD 通过揭示丰富的突触后密度蛋白 95 (PSD-95) 和排除前标记突和可溶性细胞质蛋白α蛋白。我们的 ecs 诱导和 small-scale psd 分馏方法很容易适应其他啮齿动物的脑区, 并提供了一个相对简单和可靠的方法来评价 ecs 对 psd 蛋白表达的影响。

Protocol

所有试验程序, 包括动物实验, 都已由伊利诺伊大学香槟分校的机构动物保育和使用委员会批准。 1. 维持鼠窝 养殖大大鼠 (参见材料表), 并在标准条件下保持它们的12小时暗循环和 ad 随意获得食物和水。 在产后日 (P) 28 将大鼠幼崽断奶, 以 2-4 的雄性或雌性窝。 用无毒的永久性黑色标记标记雄性大鼠的尾巴。 对雄性大鼠每周3次称重, ?…

Representative Results

使用详细的程序在这里提出, 一个电击 (55 毫安, 100 脉冲/s 0.5 s) 通过耳夹电极诱导非期4-5 挛发作大鼠 (图 1A-b) 传递。总8的大鼠接受急性 ECS 诱导和显示阶段4-5 强直性挛发作。癫痫发作持续了大约十年代, 所有的老鼠在 1-2 分钟内恢复了癫痫停止。假 “没有癫痫” 大鼠没有受到电击, 因此没有显示癫痫发作。共使用了4只假鼠。对于慢性 ECS 诱…

Discussion

在这里, 我们描述一个 ECS 诱导方法的大鼠, 诱发全球刺激神经元活动在他们的海马。ECS 是一种动物模型的电治疗, 这是临床用于治疗药物难治性抑郁症的人1,2,3。尽管使用电疗法治疗严重抑郁症, 但确切的基础机制仍不清楚。由于 ecs 诱发啮齿动物的抑郁样行为并刺激海马神经发生4,32

Declarações

The authors have nothing to disclose.

Acknowledgements

作者感谢 Dr. 埃里克 c. 博尔顿允许我们使用他的离心机为分馏和 Dr. 格雷厄姆 h. Diering 在 Dr. 理查德 l. 胡加尼尔的实验室在约翰的霍普金斯大学为我们提供了 small-scale 协议的 PSD 分馏。

Materials

Spargue-Dawley rat Charles River Laboratories ECS supplies
A pulse generator Ugo Bsile, Comerio, Italy 57800 ECS supplies
MilliQ water purifying system EMD Millipore Z00Q0VWW Subcellular fractionation supplies
Sucrose Em science SX 1075-3 Subcellular fractionation supplies
Na4O7P2 SIGMA-ALDRICH 221368 Subcellular fractionation supplies
Ethylenediaminetetraacetic acid (EDTA) SIGMA-ALDRICH E9884 Subcellular fractionation supplies
HEPES SIGMA-ALDRICH H0527 Subcellular fractionation supplies
Okadaic acid TOCRIS 1136 Subcellular fractionation supplies
Halt Protease Inhibitor Thermo Scientific 78429 Subcellular fractionation supplies
NaVO3 SIGMA-ALDRICH 72060 Subcellular fractionation supplies
EMD Millipore Sterito Sterile Vacuum Bottle-Top Filters Fisher Scientific SCGPS05RE Subcellular fractionation supplies
Iris Scissors WPI (World Precision Instruments) 500216-G Subcellular fractionation supplies
30 mm tissue culture dish Fisher Scientific 08-772B Subcellular fractionation supplies
Glass homogenizer and a Teflon pestle VWR 89026-384 Subcellular fractionation supplies
1.7 mL microcentrifuge tube DENVILLE SCIENTIFIC INC.  C2170 (1001002) Subcellular fractionation supplies
Sorvall Legend XT/XF Centrifuge  Thermo Fisher 75004521 Subcellular fractionation supplies
Pierce BCA Protein Assay Reagent A, 500 mL Thermo Fisher #23228 Western blot supplies
Pierce BCA Protein Assay Reagent B, 25 mL Thermo Fisher #1859078 Western blot supplies
SDS-polyacrylamide gel (SDS-PAGE) BIO-RAD #4561086S Western blot supplies
Running Buffer Made in the lab Western blot supplies. 
Mini-PROTEAN Tetra Vertical Electrophorsis Cell for MiniPrecast Gels, 4-gel BIO-RAD #1658004 Western blot supplies
Polyvinyl difluoride (PVDF) membrane  Milipore IPVH00010 Western blot supplies
Transfer Buffer Made in the lab Western blot supplies. 
Tris-base Fisher Scientific BP152-1 Western blot supplies
Glycine Fisher Scientific BP381-5 Western blot supplies
Sodium dodecyl sulfate SIGMA-ALDRICH 436143 Western blot supplies
Methanol  Fisher Scientific A454-4 Western blot supplies
Triton X-100 Fisher Scientific BP151-500 detergent for PSD isolation
Mini Trans-Blot Module  BIO-RAD #1703935 Western blot supplies
Nonfat instant dry milk Great value Western blot supplies
Multi-purposee rotator  Thermo Scientific Model-2314 Western blot supplies
Hyblot CL Autoradiography Film DENVILLE SCIENTIFIC INC.  E3018 (1001365) Western blot supplies
Enhanced chemifluorescence substrate  Thermo Scientific 32106 Western blot supplies
a Konica SRX-101A film processor KONICA MINOLTA SRX-101A Western blot supplies
Name of Antibody
PSD-95 Cell Signaling #2507 Antibody dilution = 1:500-1000, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit
Synaptophysin Cell Signaling #4329 Antibody dilution = 1:500-1000, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit
alpha-Tubulin Santacruz SC-5286 Antibody dilution = 1:500-1000, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Mouse
GluN2B Neuromab 75-097 Antibody dilution = 1:500-1000, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Mouse
GluA2 Sigma-aldrich Sab 4501295 Antibody dilution = 1:500-1000, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Rabbit
STEP Santacruz SC-23892 Antibody dilution = 1:200-500, time = 9 – 12 h, Reaction Temperature = 4 °C, Host Species = Mouse
Peroxidas AffiniPure Donkey Anti-Mouse IgG (H+L) Jackson ImmunoReserch laboratory 715-035-150 Antibody dilution = 1:2000-5000, time = 1 h, Reaction Temperature = RT, Host Species = Donkey
Peroxidas AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoReserch laboratory 711-035-152 Antibody dilution = 1:2000-5000, time = 1 h, Reaction Temperature = RT, Host Species = Donkey

Referências

  1. Dierckx, B., Heijnen, W. T., van den Broek, W. W., Birkenhager, T. K. Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: a meta-analysis. Bipolar Disord. 14 (2), 146-150 (2012).
  2. McClintock, S. M., et al. Multifactorial determinants of the neurocognitive effects of electroconvulsive therapy. J ECT. 30 (2), 165-176 (2014).
  3. Jelovac, A., Kolshus, E., McLoughlin, D. M. Relapse following successful electroconvulsive therapy for major depression: a meta-analysis. Neuropsychopharmacology. 38 (12), 2467-2474 (2013).
  4. Inta, D., et al. Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS One. 8 (7), 69869 (2013).
  5. Segi-Nishida, E., Warner-Schmidt, J. L., Duman, R. S. Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci USA. 105 (32), 11352-11357 (2008).
  6. Zetterstrom, T. S., Pei, Q., Grahame-Smith, D. G. Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res Mol Brain Res. 57 (1), 106-110 (1998).
  7. Altar, C. A., et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci. 24 (11), 2667-2677 (2004).
  8. Ploski, J. E., Newton, S. S., Duman, R. S. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J Neurochem. 99 (4), 1122-1132 (2006).
  9. Pusalkar, M., et al. Acute and Chronic Electroconvulsive Seizures (ECS) Differentially Regulate the Expression of Epigenetic Machinery in the Adult Rat Hippocampus. Int J Neuropsychopharmacol. 19 (9), (2016).
  10. Jang, S. S., Royston, S. E., Lee, G., Wang, S., Chung, H. J. Seizure-Induced Regulations of Amyloid-beta, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016 (2123748), 1-13 (2016).
  11. Limoa, E., et al. Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation. 13 (1), 230 (2016).
  12. Vinade, L., et al. Affinity purification of PSD-95-containing postsynaptic complexes. J Neurochem. 87 (5), 1255-1261 (2003).
  13. Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Jaffe, H. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem Biophys Res Commun. 339 (2), 687-694 (2006).
  14. Westmark, P. R., Westmark, C. J., Jeevananthan, A., Malter, J. S. Preparation of Synaptoneurosomes from Mouse Cortex using a Discontinuous Percoll-Sucrose Density Gradient. J Vis Exp. (3196), e1-e9 (2011).
  15. Sheng, M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA. 98 (13), 7058-7061 (2001).
  16. Sheng, M., Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem. 76, 823-847 (2007).
  17. Ehrlich, I., Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci. 24 (4), 916-927 (2004).
  18. Schnell, E., et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA. 99 (21), 13902-13907 (2002).
  19. Bermejo, M. K., Milenkovic, M., Salahpour, A., Ramsey, A. J. Preparation of synaptic plasma membrane and postsynaptic density proteins using a discontinuous sucrose gradient. J Vis Exp. (91), e51896 (2014).
  20. Tan, H. L., Queenan, B. N., Huganir, R. L. GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proc Natl Acad Sci USA. 112 (32), 10026-10031 (2015).
  21. Diering, G. H., Gustina, A. S., Huganir, R. L. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron. 84 (4), 790-805 (2014).
  22. Luttjohann, A., Fabene, P. F., van Luijtelaar, G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav. 98 (5), 579-586 (2009).
  23. Chiu, K., Lau, W. M., Lau, H. T., So, K. -. F., Chang, R. C. -. C. Micro-dissection of Rat Brain for RNA or Protein Extraction from Specific Brain Region. J Vis Exp. (7), e269 (2007).
  24. Hagihara, H., Toyama, K., Yamasaki, N., Miyakawa, T. Dissection of Hippocampal Dentate Gyrus from Adult Mouse. J Vis Exp. (1543), e1-e6 (2009).
  25. Kim, M. J., et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron. 56 (3), 488-502 (2007).
  26. Won, S., Incontro, S., Nicoll, R. A., Roche, K. W. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci USA. 113 (32), 4736-4744 (2016).
  27. Qu, L., Akbergenova, Y., Hu, Y., Schikorski, T. Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J Comp Neurol. 514 (4), 343-352 (2009).
  28. Delaney, A. J., Sedlak, P. L., Autuori, E., Power, J. M., Sah, P. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits. J Neurophysiol. 109 (5), 1391-1402 (2013).
  29. Zhang, Y., et al. The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci. 28 (42), 10561-10566 (2008).
  30. Braithwaite, S. P., et al. Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci. 23 (11), 2847-2856 (2006).
  31. Paul, S., Nairn, A. C., Wang, P., Lombroso, P. J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci. 6 (1), 34-42 (2003).
  32. Malberg, J. E., Eisch, A. J., Nestler, E. J., Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 20 (24), 9104-9110 (2000).
  33. Kandratavicius, L., et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 10, 1693-1705 (2014).
  34. Loscher, W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 50 (1-2), 105-123 (2002).
  35. Stromgren, L. S., Juul-Jensen, P. EEG in unilateral and bilateral electroconvulsive therapy. Acta Psychiatr Scand. 51 (5), 340-360 (1975).
  36. Abrams, R., Volavka, J., Fink, M. EEG seizure patterns during multiple unilateral and bilateral ECT. Compr Psychiatry. 14 (1), 25-28 (1973).
  37. Duman, R. S., Vaidya, V. A. Molecular and cellular actions of chronic electroconvulsive seizures. J ECT. 14 (3), 181-193 (1998).
  38. Andre, V., Ferrandon, A., Marescaux, C., Nehlig, A. Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res. 42 (1), 7-22 (2000).
  39. Sinclair, D., et al. Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus. J Neurodev Disord. 8 (14), 1-19 (2016).
  40. Sakaida, M., et al. Electroconvulsive seizure-induced changes in gene expression in the mouse hypothalamic paraventricular nucleus. J Psychopharmacol. 27 (11), 1058-1069 (2013).
  41. Hu, J. H., et al. Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron. 68 (6), 1128-1142 (2010).
  42. Blackstone, C. D., et al. Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem. 58 (3), 1118-1126 (1992).
  43. Blackstone, C. D., Levey, A. I., Martin, L. J., Price, D. L., Huganir, R. L. Immunological detection of glutamate receptor subtypes in human central nervous system. Ann Neurol. 31 (6), 680-683 (1992).
  44. Lau, L. F., et al. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J Biol Chem. 271 (35), 21622-21628 (1996).
  45. Braithwaite, S. P., Paul, S., Nairn, A. C., Lombroso, P. J. Synaptic plasticity: one STEP at a time. Trends Neurosci. 29 (8), 452-458 (2006).
  46. Jang, S. S., et al. Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity. Mol Brain. 8 (1), 55 (2015).

Play Video

Citar este artigo
Jang, S., Jeong, H. G., Chung, H. J. Electroconvulsive Seizures in Rats and Fractionation of Their Hippocampi to Examine Seizure-induced Changes in Postsynaptic Density Proteins. J. Vis. Exp. (126), e56016, doi:10.3791/56016 (2017).

View Video