Здесь мы предлагаем протокол для хондрогенной дифференцировки из пуповинной крови, индуцированной человеческими клетками, плюрипотентных стволовых клеток.
Человеческий суставной хрящ не обладает способностью к самовосстановлению. Таким образом, дегенерация хряща обрабатывается не лечебными, а консервативными методами. В настоящее время предпринимаются усилия по восстановлению поврежденного хряща с эксфорированными хондроцитами ex vivo или мезенхимальными стволовыми клетками, полученными из костного мозга (BMSCs). Однако ограниченная жизнеспособность и нестабильность этих клеток ограничивают их применение при реконструкции хряща. Человеческие индуцированные плюрипотентные стволовые клетки (hiPSCs) получили научное внимание в качестве новой альтернативы регенеративным применениям. Обладая неограниченной способностью к самообновлению и мультипотентностью, hiPSC были выделены в качестве нового источника сменных клеток для восстановления хряща. Однако получение большого количества высококачественных хондрогенных гранул является серьезной проблемой для их клинического применения. В этом исследовании мы использовали клетки эмбрионального тела (EB), которые были выделены для хондрогенной дифференцировки. Успешный хондрогенез был подтвержден ПЦРD, окрашивание синим алкалоидом, толуидиновым синим и антителами против коллагена I и II (COL1A1 и COL2A1, соответственно). Мы предоставляем подробный метод для дифференциации iPSCs (CBMC-hiPSCs), полученных из мононуклеарных клеток пуповинной крови, в хондрогенные гранулы.
Использование hiPSC представляет собой новую стратегию скрининга наркотиков и механистических исследований различных заболеваний. С точки зрения регенерации hiPSCs также являются потенциальным источником для замены поврежденных тканей с ограниченной лечебной способностью, таких как суставной хрящ 1 , 2 .
Регенерация нативного суставного хряща была проблемой в течение нескольких десятилетий. Суставной хрящ представляет собой мягкую белую ткань, которая покрывает конец костей, защищая их от трения. Однако при повреждении он обладает ограниченной регенеративной способностью, что делает самовосстановление практически невозможным. Поэтому исследования, посвященные регенерации хряща, продолжаются в течение нескольких десятилетий.
Раньше дифференцировку in vitro в хондрогенную линию обычно проводили с BMSCs или нативными хондроцитами, выделенными из коленного сустава 3 . Из-за tO их хондрогенный потенциал, BMSCs и родные хондроциты имеют многочисленные достоинства, поддерживающие их использование в хондрогенезе. Однако из-за их ограниченного расширения и нестабильного фенотипа эти клетки сталкиваются с несколькими ограничениями в восстановлении дефектов суставного хряща. В условиях культивирования in vitro эти клетки, как правило, теряют свои характеристики после 3-4 проходов, что в конечном итоге влияет на их способности к дифференциации 4 . Кроме того, в случае местных хондроцитов дополнительный ущерб коленному суставу неизбежен при получении этих клеток.
В отличие от BMSC или родных хондроцитов hiPSCs могут неограниченно расширяться in vitro . При надлежащих условиях культивирования hiPSCs обладают большим потенциалом в качестве источника замены хондрогенной дифференциации. Тем не менее, сложно изменить внутренние характеристики hiPSCs 5 . Кроме того, требуется несколько сложных in vitro stePs, чтобы направить судьбу hiPSCs на определенный тип ячейки. Несмотря на эти осложнения, использование hiPSC по-прежнему рекомендуется из-за их высоких способностей к самообновлению и их способности дифференцироваться в целевые клетки, включая хондроциты.
Хондрогенную дифференцировку обычно проводят с помощью трехмерных систем культивирования, таких как культура гранул или культура микромассы, с использованием MSC-подобных клеток-предшественников. При использовании hiPSC протокол для генерации MSC-подобных клеток-предшественников отличается от существующих протоколов. Некоторые группы используют монослойную культуру hiPSCs для прямого преобразования фенотипа в MSC-подобные клетки 7 . Тем не менее, в большинстве исследований используется EB для генерации клеток выроста, которые напоминают MSC 8 , 9 , 10 , 11 .
Различные типы факторов роста используются для индуцирования хондрогаНесис. Обычно белки семейства BMP и TGFβ используются отдельно или в комбинации. Дифференциация также была вызвана другими факторами, такими как GDF5, FGF2 и IGF1 12 , 13 , 14 , 15 . Показано, что TGFβ1 стимулирует хондрогенез дозозависимым образом в MSC 16 . По сравнению с другим изотипом TGFβ3, TGFβ1 индуцирует хондрогенез путем увеличения консиляции мезенхимальных клеток перед хрящами. TGFβ3 индуцирует хондрогенез путем значительного увеличения пролиферации мезенхимных клеток 17 . Однако TGFβ3 чаще используется исследователями, чем TGFβ1 7 , 10 , 18 , 19 . BMP2 усиливает экспрессию генов, связанных с компонентами хондрогенной матрицы у человекаСуставные хондроциты в условиях in vitro 20 . BMP2 увеличивает экспрессию генов, критически важных для образования хряща в MSC, в комбинации с белками TGFβ 21 . Было также показано, что BMP2 синергически усиливает действие TGFβ3 через пути Smad и MAPK 22 .
В этом исследовании CBMC-hiPSCs были объединены в EBs с использованием EB-среды в чашке Petri с низким прилеганием. Клетки отростков индуцировали присоединением EBs к тарелке, покрытой желатином. Хондрогенную дифференцировку с использованием клеток выроста проводили культурой гранул. Обработка как BMP2, так и TGFβ3 успешно конденсировала клетки и индуцировала накопление белка внеклеточного матрикса (ECM) для образования хондрогенных гранул. В этом исследовании предлагается простой, но эффективный протокол хондрогенной дифференцировки с использованием CBMC-hiPSC.
Этот протокол успешно сгенерировал hiPSCs из CBMC. Мы перепрограммировали CBMCs на hiPSC с использованием вирусного вектора Сендай, содержащего факторы Яманаки 24 . Три случая использовались при дифференцировке, и все эксперименты успешно генерировали хондрогенные гранулы, использ…
The authors have nothing to disclose.
Эта работа была поддержана грантом от проекта исследований и разработок в области технологий здравоохранения в Корее, Министерства здравоохранения, социального обеспечения и по делам семьи, Республика Корея (HI16C2177).
Plasticware | |||
100mm Dish | TPP | 93100 | |
6-well Plate | TPP | 92006 | |
50 mL Cornical Tube | SPL | 50050 | |
15 mL Cornical Tube | SPL | 50015 | |
10 mL Disposable Pipette | Falcon | 7551 | |
5 mL Disposable Pipette | Falcon | 7543 | |
12-well Plate | TPP | 92012 | |
Name | Company | Catalog Number | Description |
E8 Medium Materials | |||
DMEM/F12, HEPES | Life Technologies | 11330-057 | E8 Medium (500 mL) |
Sodium Bicarbonate | Life Technologies | 25080-094 | E8 Medium (Conc.: 543 μg/mL) |
Sodium Selenite | Sigma Aldrich | S5261 | E8 Medium (Conc.: 14 ng/mL) |
Human Transfferin | Sigma Aldrich | T3705 | E8 Medium (Conc.: 10.7 μg/mL) |
Basic FGF2 | Peprotech | 100-18B | E8 Medium (Conc.: 100 ng/mL) |
Human Insulin | Life Technologies | 12585-014 | E8 Medium (Conc.: 20 μg/mL) |
Human TGFβ1 | Peprotech | 100-21 | E8 Medium (Conc.: 2 ng/mL) |
Ascorbic Acid | Sigma Aldrich | A8960 | E8 Medium (Conc.: 64 μg/mL) |
DPBS | Life Technologies | 14190-144 | |
Vitronectin | Life Technologies | A14700 | |
ROCK Inhibitor | Sigma Aldrich | Y0503 | |
Name | Company | Catalog Number | Description |
Quality Control Materials | |||
18 mm Cover Glass | Superior | HSU-0111580 | |
4% Paraformaldyhyde | Tech & Innovation | BPP-9004 | |
Triton X-100 | BIOSESANG | 9002-93-1 | |
Bovine Serum Albumin | Vector Lab | SP-5050 | |
Anti-SSEA4 Antibody | Millipore | MAB4304 | |
Anti-Oct4 Antibody | Santa Cruz | SC9081 | |
Anti-TRA-1-60 Antibody | Millipore | MAB4360 | |
Anti-Sox2 Antibody | Biolegend | 630801 | |
Anti-TRA-1-81 Antibody | Millipore | MAB4381 | |
Anti-Klf4 Antibody | Abcam | ab151733 | |
Alexa Fluor 488 goat anti-mouse IgG (H+L) antibody | Molecular Probe | A11029 | |
Alexa Fluor 594 goat anti-rabbit IgG (H+L) antibody | Molecular Probe | A11037 | |
DAPI | Molecular Probe | D1306 | |
Prolong gold antifade reagent | Invitrogen | P36934 | |
4% Paraformaldyhyde | Tech & Innovation | BPP-9004 | |
Tween 20 | BIOSESANG | T1027 | |
Bovine Serum Albumin | Vector Lab | SP-5050 | |
Anti-Collagen II antibody | abcam | ab34712 | 1:100 |
Alcian blue | Sigma Aldrich | A3157-10G | |
Fast Green FCF | Sigma Aldrich | F7252-25G | |
Safranin O | Sigma Aldrich | 090m0039v | |
Nuclear fast red | Americanmastertech | STNFR100 | |
xylene | Duksan | 115 | |
Ethanol | Duksan | 64-17-5 | |
Mayer's hematoxylin solution | wako pure chemical industries | LAK7534 | |
DAP | VECTOR LABORATORIES | SK-4100 | |
Slide Glass, Coated | Hyun Il Lab-Mate | HMA-S9914 | |
Trizol | Invitrogen | 15596-018 | |
Chloroform | Sigma Aldrich | 366919 | |
Isoprypylalcohol | Millipore | 109634 | |
Ethanol | Duksan | 64-17-5 | |
RevertAid First Strand cDNA Synthesis kit | Thermo Scientfic | K1622 | |
Name | Company | Catalog Number | Description |
Chondrogenic Differentiation Materials | |||
DMEM | Life Technologies | 11885 | Chondrogenic media component (500 mL) |
Penicilin Streptomycin | Life Technologies | P4333 | Chondrogenic media component (Conc.: 1 %) |
Ascorbic Acid | Sigma Aldrich | A8960 | Chondrogenic media component (Conc.: 64 μg/mL) |
MEM Non-Essential Amino Acids Solution (100X) | Life Technologies | 11140-050 | Chondrogenic media component (Conc.: 100 mM) |
rhBMP-2 | R&D | 355-BM-050 | Chondrogenic media component (Conc.:100ng/ml) |
Recombinant Hman TGF-beta3 | R&D | 243-B3-002 | Chondrogenic media component (Conc.:10ng/ml) |
KnockOut Serum Replacement | Life Technologies | 10828-028 | Chondrogenic media component (Conc.: 1 %) |
ITS+ Premix | BD | 354352 | Chondrogenic media component (Conc.: 1 %) |
Dexamethasone-Water Soluble | Sigma Aldrich | D2915-100MG | Chondrogenic media component (Conc.:10-7 M) |
GlutaMAX Supplement | Life Technologies | 35050-061 | Chondrogenic media component (Conc.: 1 %) |
Sodium pyruvate solution | Sigma Aldrich | S8636 | Chondrogenic media component (Conc.: 1 %) |
L-Proline | Sigma Aldrich | P5607-25G | Chondrogenic media component (40μg/ml) |