DNA-protein interactions are essential for multiple biological processes. During the evaluation of cellular functions, the analysis of DNA-protein interactions is indispensable for understanding gene regulation. Chromatin immunoprecipitation (ChIP) is a powerful tool to analyze such interactions in vivo.
Multiple cellular processes, including DNA replication and repair, DNA recombination, and gene expression, require interactions between proteins and DNA. Therefore, DNA-protein interactions regulate multiple physiological, pathophysiological, and biological functions, such as cell differentiation, cell proliferation, cell cycle control, chromosome stability, epigenetic gene regulation, and cell transformation. In eukaryotic cells, the DNA interacts with histone and nonhistone proteins and is condensed into chromatin. Several technical tools can be used to analyze DNA-protein interactions, such as the Electrophoresis (gel) Mobility Shift Assay (EMSA) and DNase I footprinting. However, these techniques analyze the protein-DNA interaction in vitro, not within the cellular context. Chromatin immunoprecipitation (ChIP) is a technique that captures proteins at their specific DNA binding sites, thereby allowing for the identification of DNA-protein interactions within their chromatin context. It is done by fixation of the DNA-protein interaction, followed by immunoprecipitation of the protein of interest. Subsequently, the genomic site that the protein was bound to is characterized. Here, we describe and discuss ChIP and demonstrate its analytical value for the identification of the Transforming Growth Factor-β (TGF-β)-induced binding of the transcription factor SMAD2 to SMAD Binding Elements (SBE) within the promoter region of the tyrosine-protein kinase Kit (c-KIT) receptor ligand Stem Cell Factor (SCF).
In the nucleus of eukaryotes, DNA interacts with histone proteins and nonhistone proteins and is condensed into chromatin. In the physiological, pathophysiological, and cell biological context, cellular functions are spatially and temporarily controlled by chromatin-coordinated gene expression. DNA-protein interactions have an essential role in the regulation of cellular processes, such as DNA replication, recombination, and repair, as well as protein expression. Therefore, the analysis of DNA-protein interactions is an indispensable tool in the evaluation of gene expression and cell function.
Several techniques exist to assess DNA-protein interactions in vitro, such as the Electrophoresis (gel) Mobility Shift Assay (EMSA) and DNase I footprinting1,2. However, these techniques do not analyze the protein-DNA interaction within the chromatin and cellular context. ChIP is a technique that captures proteins bound to their specific DNA binding sites and thereby facilitates the identification of DNA-protein interactions within the chromatin context. The technique was originally developed by Gimour and Lis for the assessment of RNA polymerase II binding to specific genes in Escherichia coli and Drosophila melanogaster3,4. It is done by fixation of the DNA-protein complexes, followed by performing chromatin extraction and shearing the DNA into ~200 base pair (bp) fragments. Subsequently, the DNA-bound protein of interest is isolated by immunoprecipitation. After the reversal of the DNA-protein crosslink, the DNA is purified and analyzed. Several methods can be used for the analysis of the protein binding sites and depend upon the nucleic acid sequence of the protein binding site within the target gene5. In cases where the DNA sequence is known, standard Polymerase Chain Reactions (PCR) can be applied, using specific primer pairs flanking the known binding site. Quantitative Real-Time PCR (qRT-PCR) can also be used6. In cases where the sequence is unknown, ChIP can be combined with DNA microarrays (ChIP-on-chip), DNA sequencing (ChIP-seq), or cloning techniques7,8,9.
The TGF-β pathway has potent tumor suppressing functions and is a key pathway in cell differentiation. It is activated through the binding of the TGF-β1 ligand to its cognate receptor complex, resulting in the serine-phosphorylation of SMAD2/3 transcription factors. Following their association with the common mediator, SMAD4, the SMAD-complex translocates to the nucleus and binds to the SBE within the promoter region of the target genes, where it regulates genes controlling the cell cycle, apoptosis, and cell differentiation. The transcriptional response to TGF-β stimulation is cell type- and context-specific10. Recently, we described a positive feedback loop between TGF-β and the c-KIT pathway11. In this model, TGF-β1-activated SMAD2 binds to the c-KIT ligand promoter and induces its expression and secretion. Subsequently, the c-KIT ligand activates the c-KIT receptor in an auto- and para-crinic fashion. c-KIT receptor activation results in STAT3 Tyr705-phosphorylation via JAK1/2. Following STAT3-activation and nuclear translocation, STAT3 binds to the TGF-β1 ligand gene and regulates its expression.
Here, we demonstrate the essential role of ChIP analysis for the identification of SMAD2 binding to the c-KIT receptor ligand promoter and for the identification of the Signal Transducer (and) Activator (of) Transcription 3 (STAT3 binding to the TGF-β1-gene).
1. Preparation of Solutions
2. Cell Fixation and Shearing
3. Confirmation of the Shearing Efficiency
4. Immunoprecipitation
5. Elution
6. Binding-site Analysis
The binding of the TGF-β1 ligand to its cognate receptor complex results in the serine-phosphorylation of SMAD2/3 transcription factors, followed by their association with the common mediator, SMAD4. The SMAD complex translocates to the nucleus. TGF-β can regulate gene transcription, either directly via SMAD binding to SBEs within regulatory regions of the target genes, or indirectly through the SMAD-regulated expression of transcriptional activators or repressors that subsequently regulate the expression of the gene of interest10. To test if the c-KIT ligand SCF is transcriptionally regulated by the direct TGF-β1-induced binding of SMAD2 to its promoter, we analyzed the SCF promoter-containing, 2.4-kb, 5'-flanking region of the SCF gene for the SMAD2 binding motif, 5'-AGAC-3' (SBE)13,14. We identified 7 putative SBEs upstream of the SCF start codon (Figure 1A). To confirm the TGF-β1-induced binding of SMAD2 to the SCF promoter, the ChIP assay described here was performed. The TGF-β1 treatment resulted in SMAD2 binding to the SCF promoter in human liver cancer lines, HepG2 and Hep3B, cells (Figure 1B). In the absence of TGF-β1-stimulation, no SMAD binding was noted. As a positive control for TGF-β1-induced SMAD activation, ChIP for PAI-1 was performed. The PAI-1 promoter is a known target of TGF-β/SMAD13. To confirm the specificity of the SMAD2 immunoprecipitation, unspecific IgG antibodies were used; no SMAD2 binding to the SBE was noted after immunoprecipitation with IgG.
For another demonstration of the ChIP technology, we analyzed the 5'-flanking region of the TGF-β ligand gene for the STAT3 consensus binding motifs 5'-TT(N4)AA-3' and 5'-TT(N5)AA-3'15. We identified two putative STAT3 binding sites upstream of the TGFB start codon at positions -4384/-4373 (STB-1) and -5365/-5357 (STB-2) (Figure 2A). To confirm the TGF-β1-induced binding of STAT3 to the TGF-β ligand gene, we performed ChIP assays using TGF-β1-treated HepG2 and Hep3B cells. TGF-β1 treatment resulted in STAT3 binding to the second putative STAT3 binding site (STB-2) of the TGFB gene, but not to the first one (STB-1) (Figure 2B). In this example, the positive STAT3 binding to STB-2 serves as an internal positive control. Similar to the above ChIP experiment, STAT3 binding to the STB-2 was not seen after immunoprecipitation using IgG.
Figure 1: TGF-β-induced SMAD2 Binding to the SCF Promoter. (A) Schematic representation of the SCF promoter, with putative SBEs shown as boxes (white boxes = AGAC) with their relative position to the start codon. The ChIP primer location is shown below, with the relative positions to the SCF start codon and the PCR product size. (B) ChIP for SMAD2 binding to the SCF promoter. Chromatin-protein complexes of TGF-β1-treated and untreated HepG2 and Hep3B cells were immunoprecipitated with anti-SMAD2 antibody. PCR was performed using SCF-specific primers. On the left, PCR results using input DNA are shown. In the middle, PCR results after immunoprecipitation with unspecific IgG are shown for the confirmation of SMAD2 immunoprecipitation specificity. Shown in the bottom panel, ChIP for SMAD2 binding to PAI-1 was used as a positive control. Please click here to view a larger version of this figure.
Figure 2: TGF-β-induced STAT3 Binding to the TGF-β Gene. (A) Schematic of the TGF-β gene, with putative STAT3 binding sites shown as gray boxes with their relative position to the start codon. ChIP primer locations are shown with their relative positions to the TGF-β start codon and the PCR product sizes indicated below. (B) ChIP for TGF-β1-induced STAT3 binding to the TGF-β gene. Chromatin-protein complexes of TGF-β1-treated and untreated HepG2 and Hep3B cells were immunoprecipitated with anti-STAT3 antibody. PCR was performed using TGF-β-specific primers. On the left, the PCR results using input DNA are shown. In the middle, the PCR results after immunoprecipitation with unspecific IgG are shown for confirmation of the STAT3 immunoprecipitation specificity. The upper panel shows the PCR results using primers specific for STAT3 binding site 1 (STB-1), and the lower panel shows the results for STAT3 binding to STAT3 binding site 2 (STB-2). Please click here to view a larger version of this figure.
In this report, we demonstrate the TGF-β1-induced binding of SMAD2 to an SBE within the c-KIT ligand promoter and TGF-β1-induced binding of STAT3 to its recognition sequence within the TGF-β1 ligand gene. We demonstrate cytokine-induced binding of both transcription factors using chromatin immunoprecipitation.
Chromatin immunoprecipitation is a powerful tool to demonstrate the direct binding of a protein of interest to DNA, to characterize the stimuli that induce protein binding to DNA, and to characterize the DNA sequence to which the protein binds. The latter information can help in the identification of genes regulated by a specific protein of interest and is achieved by the use of ChIP-on-chip, ChIP-seq, or cloning strategies7,8,9. One of the major advantages of ChIP versus other methods of demonstrating DNA-protein binding, such as EMSA or DNase I footprinting, is that, in the ChIP technology, the binding is captured in vivo, while with the others, it is performed in vitro. Hence, ChIP provides insight into DNA-protein binding within the cellular context, while the other techniques represent an isolated system.
However, ChIP analysis is complex, involves multiple steps that can impact the results, and requires optimization and experience. One of the first steps that is critical for successful ChIP is the crosslink step (step 2.2). UV crosslinking is irreversible and therefore unsuitable for ChIP. Formaldehyde crosslinking is preferred, but formaldehyde concentration and crosslinking time can both influence the efficiency of chromatin shearing and antigen precipitation. In general, lower formaldehyde concentrations (1% w/v) and shorter crosslinking times (5-10 min) are preferable, as they improve the shearing efficiency. However, formaldehyde is not efficient at protein-protein crosslinking and therefore is suboptimal for proteins that do not directly bind to DNA16. For such cases, ChIP can be done in a two-step approach, in which protein-protein crosslinking is done first using crosslinkers such as disuccinimidyl glutarate, followed by formaldehyde-mediated DNA-protein crosslinking17.
The next critical step is chromatin shearing. In our study, we used enzymatic shearing using micrococcal nuclease. Enzymatic shearing is especially useful for noncrosslinked native ChIP (N-ChIP), when sonication would disrupt the DNA-protein binding. N-ChIP is predominantly used for the analysis of histones and histone modifiers18. While micrococcal nuclease is considered a relatively non-specific endo-exonuclease, it has been shown to elicit sequence-specific cleavage19. This can result in a sequence-dependent bias in the resulting fragments, with overrepresentation of certain gene loci20. Sonication creates randomly sized DNA fragments, without sequence bias, and is generally preferred for crosslinked ChIP (X-ChIP). However, sonication conditions must be determined empirically for each cell or tissue type and sonicator model, and resulting DNA fragments are generally larger than with enzymatic shearing16. Also, over-sonication or emulsification of the sample can result in the loss of antibody epitopes due to protein denaturation and degradation.
The immunoprecipitation step is another critical step that can greatly influence the results of ChIP. Agarose beads bind DNA nonspecifically, and variation in the number of added beads can affect the specific signal-to-background ratio. Hence, it is important to keep the agarose bead "slurry" well-suspended when it is added to the DNA-protein samples. In regard to the antibody used for the immunoprecipitation, in general, ChIP-grade antibodies should be used and, in cases where these are not available, at least immunoprecipitation-grade antibodies should be preferred. As specific epitopes can be masked during crosslinking, polyclonal antibodies are advantageous, as they recognize several epitopes. The amount of antibody added should be in excess of the factor being precipitated and thus should be determined empirically for each factor/antibody. Also, as the kinetics for reaching the equilibrium of antibody binding differ for each antibody, the optimal incubation conditions must be determined for each antibody.
Several controls can and should be included in the experimental setup. In cases where the induction of a specific DNA-protein binding reaction is evaluated, it is important to include an input DNA control to demonstrate equal template DNA amounts in the final analysis (i.e. PCR or qRT-PCR). An antibody control is required to confirm the specificity of the immunoprecipitation of the protein of interest. Usually isotype-matched immunoglobulins are well-suited as negative controls, but agarose beads can also be used. Occasionally, positive controls are used to confirm a functional experimental flow of the ChIP, and anti-histone antibodies are frequently used for this purpose. In stimulation experiments, a preferable positive control is immunoprecipitation of the protein of interest, with subsequent sequence analysis for a known DNA region the proteins bind to upon stimulation. In our representative results, the SBE within the PAI-1 promoter was used as a known target for TGF-β1-induced SMAD binding. In experiments without stimulated protein binding, a DNA sequence known not to be a target for the protein of interest can be used for the subsequent DNA analysis. In regard to the DNA analysis, it is important to include a reaction without template DNA to rule out contamination.
ChIP is an excellent technique to directly demonstrate the binding of a protein of interest to a gene. However, it is not a functional study. In cases in which a protein of interest is thought of having a regulatory role, it is imperative to also perform functional assays, such as reporter gene-based assays (e.g., luciferase). In these protocols, the gene of interest is cloned in a regulatory position of a reporter gene. Induction of the gene of interest results in the expression of the reporter gene if it has a regulatory function. For further confirmation of the regulatory role of the specific protein of interest, either knock-down or knock-in cells can be generated in which the DNA-binding protein is genetically silenced. As an additional control, the protein binding site in the regulatory gene can be mutated to prevent the binding of the protein of interest. In either of the latter two experimental designs, cell stimulation will not result in the expression of the marker gene.
The authors have nothing to disclose.
This work was supported by the University of Texas MD Anderson Cancer Center, Houston, TX (startup funds, B.B.).
HepG2 cells | ATCC | HB-8065 | |
Hep3B cells | ATCC | HB-8064 | |
TGF-β1 | R&D Systems | 101-B1 | Used at a concentration of 10 ng/ml |
Anti-SMAD2 antibody | Cell Signalling Technology | 5339 | Amount used per IP: 3 µg |
Anti-STAT3 antibody | Cell Signalling Technology | 4904 | Amount used per IP: 3 µg |
ChIP-IT Protein G Magnetic Beads | Active Motif | 53033 | |
Protease Inhibitor Cocktail | Active Motif | 37490 | |
Micrococcal Nuclease | Cell Signalling Technology | 10011 | |
PCR forward primer: PAI-1 | Sequence: 5’-GGAAGAGGATAAAGGACAAGCTG-3’ | ||
PCR reverse primer: PAI-1 | Sequence: 5’-TGCAGCCAGCCACGTGATTGTC-3’ | ||
PCR forward primer: SCF | Sequence: 5’-CACTGATGTTAATGTTCAGC-3’ | ||
PCR reverse primer: SCF | Sequence: 5’-GCTCTAATTTAAACCTGGAGC-3’ | ||
PCR forward primer: TGF-β1 (STB-1) | Sequence: 5’-GAGAGAGACGTGAGTGGCATGTT-3’ | ||
PCR reverse primer: TGF-β1 (STB-1) | Sequence: 5’-TAGCTTTCTCTGCCTTGGTCTCCCC-3’ | ||
PCR forward primer: TGF-β1 (STB-2) | Sequence: 5’-GTACTGGGGGAGGAGCGGCATC-3’ | ||
PCR reverse primer: TGF-β1 (STB-2) | Sequence: 5’-TGCCACTGTCTGGAGAGAGGTGTGTC-3’ |