Summary

补充电机区的光纤连接重新审视:光纤解剖,DTI和三维文档的方法

Published: May 23, 2017
doi:

Summary

本研究的目的是展示纤维解剖技术在人类尸体大脑上的每一步骤,这些解剖的3D文件以及解剖解剖纤维通路的扩散张量成像。

Abstract

本研究的目的是显示使用纤维解剖技术对尸体标本和磁共振(MR)的组合来检查辅助运动区(SMA)复合体(SMA前SMA和SMA)的白质连接的方法)造影。该方案还将描述人脑白质解剖的程序,扩散张量成像和三维文档。人脑和3D文件的纤维解剖在明尼苏达大学,神经外科系显微外科和神经解剖学实验室进行。根据Klingler的方法制备了五个死后人脑标本和两个整体头。在手术显微镜下,从外侧到内侧和外侧逐步解剖脑半球,并在每个阶段捕获3D图像。所有解剖​​结果均受扩散张量支持成像。根据Meynert纤维分类,包括关联纤维(短,优越的纵向筋膜I和前额叶),投影纤维(皮质脊髓,幽闭皮质,关节和前额皮带)和连合纤维(胼al体纤维)的连接的调查分别为也进行了。

Introduction

在Brodmann划定的14个正面区域中,位于中心运动皮质前面的前驱和前额叶区长期被认为是一个无声模块,尽管额叶在认知,行为,学习中起着重要作用,和语音处理。除了前SMA和SMA正面(Brodmann Area; BA 6)组成的辅助电机区(SMA)复合体之外,前动脉/前额模块还包括背侧前额叶(BA 46,8,和9),前额叶(BA 10)和腹外侧前额叶(BA 47)皮质,以及脑1,2侧表面的部分眶额叶皮层(BA 11)。

SMA复合体是由其功能及其连接定义的重要解剖区域。该区域的切除和损伤导致称为SMA的显着的临床缺陷综合征。 SMA综合征是包含SMA复合物3的前额神经胶质瘤病例中特别观察到的重要临床病症。 SMA复合体与边缘系统,基底神经节,小脑,丘脑,对侧SMA,上顶叶以及通过纤维束的额叶的部分具有连接。对这些白质连接的损伤的临床效果可能比皮质更严重。这是因为由于高皮质可塑性4,5,6,7,8,9,10,11,12 皮质损伤的后果可以随着时间的推移而改善。因此,SMA区域解剖学和白质通路应该是深层次的特别理解胶质瘤手术。

全面了解白质通道的解剖学对于神经外科病变的广谱治疗是重要的。最近对显微手术中获得的解剖结果的三维文献的研究被用于更好地了解脑白质通路13,14的形态解剖学和相互关系。因此,本研究的目的是使用纤维解剖技术对尸体标本和磁共振成像(MRI)动物图谱的组合来检查SMA复合物(SMA前SMA和SMA)的白质连接,并解释所有方法和这两种技术的原理及其详细的文件。

研究规划与策略

在进行实验之前,一升对纤维夹层的基本原理进行了检索,进行了解剖前和解剖过程中需要应用于标本的手术,以及已经用剥离和DTI显示的SMA区域之间的所有连接。以前关于前SMA和SMA适合区域的解剖定位和分离以及其连接的地形解剖学的研究进行了综述。

Protocol

死者在这里被列为人口,虽然死者不是技术上的人类受试者;人类科目由45 CF 46定义为“活人15,16 ”。 1.准备样品检查5个福尔马林固定的大脑(10个半球)和2个全人脑。 根据Klingler的方法17将样品固定在10%福尔马林溶液中至少2个月。 按照克林格方法17将所有标本在-16℃冷冻2周。 在自来水下解?…

Representative Results

SMA复合体位于额上回的后部。 SMA复合体的边界是前中央沟,下侧上髁,下侧有扣带沟18 。 SMA复合体由两部分组成:前SMA前侧和SMA正侧18 。这两个部分18 ( 图1A和B )之间的白质连接和功能方面存在差异。我们使用纤维解剖和DTI技术研究了这两个部分的皮质和皮质下连接,并将其显示在3D图像?…

Discussion

白色通道的重要性和研究技术

大脑皮层被认为是与人类生命250万年相关的主要神经结构。基于形态学和细胞规格,大约有200亿个神经元分成了各个部分。这些皮质部分的结构已经在功能上分组,如感觉运动,感觉运动,情感体验和复杂推理。确定灵长类动物中的所有行为都是通过独特的解剖功能连接和通过神经系统的皮层和皮质下区域拓扑分布的区域形成的。虽然大脑皮质已经…

Declarações

The authors have nothing to disclose.

Acknowledgements

数据由部分由美国国立卫生研究院和尼泊尔国立卫生研究院神经科学研究蓝图的16个NIH研究机构和中心资助的人联系项目(WU Minmin Consortium)(主要研究员:David Van Essen和Kamil Ugurbil; 1U54MH091657)提供;和麦克唐纳华盛顿大学系统神经科学中心。图2A和2D经Rhoton集合57许可(http://rhoton.ineurodb.org/?page=21899)复制。

Materials

%4 Paraformaldehyde Solution AFFYMETRIX, Inc.  2046C208 used to fixation
Freezer INSIGNA NS-CZ70WH6 used to freez
Panfield Dissector AESCULAP FD305 used to dissection
Surgical Micro Scissor W. Lorenz  04-4238 used to miscrodissection
Surgical Micro Hook V. Mueller  NL3785-009 used to miscrodissection
MICRO VESSEL STRETCHER/DILATOR W. Lorenz  04-4324 used to miscrodissection
Emax2 SC 2000 Electric Console Anspach Companies SC2102 used to craniatomy
Drill Set Anspach Companies NS-CZ70WH6 used to craniatomy
20-1000 operating microscope Moeller-Wedel,Germany FS 4-20 used to miscrodissection
Canon EOS 550D 18 MP CMOS APS-C Digital SLR Camera Canon Inc. DS126271 used to take photos
EF 100mm f/2.8L IS USM Macro Lens Canon Inc. 4657A006 used to take photos
MR-14EX II Macro Ring Lite (Flash) Canon Inc. 9389B002 used to take photos
Tripod Lino Manfrotto 322RC2 used to take photos
MAYFIELD Infinity Skull Clamp Integra Inc. A0077 used to fix the head
Modified Skrya 3T "Connectome" Scanner Siemens Company, Inc.  A911IM-MR-15773-P1-4A00 used to scan DTI
XstereO Player Yury Golubinsky Version 3.6(22) used to create anaglyphs
EF-S 18-55mm f/3.5-5.6 IS II SLR Lens Canon Inc. 2042B002 used to take photos
Scalpel 6B INVENT  7-104-L used to make incision
Compact  Speed Reducer  Anspach Companies CSR60 used to make burr hole 
14 mm Cranial Perforator  Anspach Companies CPERF-14-11-3F used to make burr hole 
2 mm x 15.6 mm Fluted Router  Anspach Companies A-CRN-M used to make craniotomy
2.1 mm Pin-shaped Burrs Anspach Companies 03.000.130S used to make craniotomy

Referências

  1. Nieuwenhuys, R., Voogd, J., Huijzen, C. V. . The Human Central Nervous System. , 620-649 (2008).
  2. Catani, M., Acqua, F., Vergani, F., Malik, F., Hodge, H. Short frontal lobe connections of the human brain. Cortex. 48, 273-291 (2012).
  3. Duffau, H., Capelle, L. Preferential brain locations of low-grade gliomas. Cancer. 100 (12), 2622-2626 (2004).
  4. Yasargil, M. G., Türe, U., Yasargil, D. C. Impact of temporal lobe surgery. J Neurosurg. 101 (05), 725-738 (2004).
  5. Türe, U., Yasargil, M. G., Friedman, A. H., Al-Mefty, O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 47 (2), 417-427 (2000).
  6. Burger, P. C., Heinz, E. R., Shibata, T., Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg. 68 (5), 698-704 (1998).
  7. Duffau, H. New concepts in surgery of WHO grade II gliomas: Functional brain mapping, connectionism and plasticity-a review. J Neurooncol. 79 (1), 77-79 (2006).
  8. Vergani, F., et al. White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry. 85 (12), 1377-1385 (2014).
  9. Luppino, G., Matelli, M., Camarda, R., Rizzolatti, G. Corticocortical connections of area F3(SMA-proper) and area F6(pre-SMA)in the macaque monkey. J. Comp.Neurol. 338, 114-140 (1993).
  10. Akkal, D., Dum, R. P., Strick, P. L. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J. Neurosci. 27, 10659-10673 (2007).
  11. Behrens, T. E. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750-757 (2003).
  12. Potgieser, A. R. E., de Jong, B. M., Wagemakers, M., Hoving, E. W., Groen, R. J. M. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Frontiers in Human Neuroscience. 28 (8), 960 (2014).
  13. Yagmurlu, K., Vlasak, A. L., Rhoton Jr, A. L. Three-Dimensional Topographic Fiber Tract Anatomy of the Cerebrum. Neurosurgery. 2, 274-305 (2015).
  14. Fernández-Miranda, J. C., Rhoton Jr, ., L, A., Álvarez-Linera, J., Kakizawa, Y., Choi, C., de Oliveira, E. P. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 62 (6 Suppl 3), 989-1026 (2008).
  15. Couzin, J. Crossing a frontier: Research on the dead. Science. 299 (5603), 29-30 (2003).
  16. . University of Minnesota. Research Ethics Available from: https://www.ahc.umn.edu/img/assets/26104/Research (2016)
  17. Ludwig, E., Klingler, J. Der innere Bau des Gehirns dargestellt auf Grund makroskopischer Präparate. The inner structure of the brain demonstrated on the basis of macroscopical preparations. Atlas cerebri humani. , 1-36 (1956).
  18. Bozkurt, B. The Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Human. J World Neurosurg. 95, 99-107 (1956).
  19. Lehericy, S. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex. 14, 1302-1309 (2004).
  20. Duffau, H. Intraoperative mapping of the cortical areas involved in multiplication and subtraction: an electrostimulation study in a patient with a left parietal glioma. J Neurol Neurosurg Psychiatry. 73 (6), 733-738 (2002).
  21. Kinoshita, M. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct. 220 (6), 3399-3412 (2015).
  22. Shimizu, S. Anatomic dissection and classic three-dimensional documentation: a unit of education for neurosurgical anatomy revisited. Neurosurgery. 58 (5), E1000 (2006).
  23. . Connectome Database Available from: https://db.humanconnectome.org (2016)
  24. Moeller, S. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 63 (5), 1144-1153 (2010).
  25. Feinberg, D. A. Multiplexed Echo Planar Imaging for sub-second whole brain fMRI and fast diffusion imaging. PLoS One. 5, e15710 (2010).
  26. Setsompop, K. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med. 67 (5), 1210-1224 (2012).
  27. Xu, J. Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI. In Proceedings of the 20th Annual Meeting of ISMRM. 20, 2306 (2012).
  28. Glasser, M. F. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 80, 105-124 (2013).
  29. Jenkinson, M., Bannister, P. R., Brady, J. M., Smith, S. M. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 17 (2), 825-841 (2002).
  30. Andersson, J. L., Skare, S., Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage. 20 (2), 870-888 (2003).
  31. Andersson, J., Xu, J., Yacoub, E., Auerbach, E., Moeller, S., Ugurbil, K. A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images. In Proceedings of the 20th Annual Meeting of ISMRM. 20, 2426 (2012).
  32. Yeh, F. C., Wedeen, V. J., Tseng, W. Y. Generalized q-sampling imaging. IEEE Trans Med Imaging. 29 (9), 1626-1635 (2010).
  33. Makris, N. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo DT-MRI study. Cereb Cortex. 15 (6), 854-869 (2005).
  34. Fernández-Miranda, J. C., Rhoton, A. L., Kakizawa, Y., Choi, C., Alvarez-Linera, J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg. 108 (4), 764-774 (2008).
  35. Maier, M. A., Armand, J., Kirkwood, P. A., Yang, H. W., Davis, J. N., Lemon, R. N. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons:an anatomical and electrophysiological study. Cereb. Cortex. 12, 281-296 (2002).
  36. Picard, N., Strick, P. L. Imaging the premotor areas. Curr. Opin. Neurobiol. 11, 663-672 (2001).
  37. Pakkenberg, B., Gundersen, H. J. G. Neocortical neuron number in humans: effect of sex and age. Journal of Comparative Neurology. 384 (2), 312-320 (1997).
  38. Geschwind, N. Disconnexion syndromes in animals and man. Brain. 88 (3), 237-294 (1965).
  39. Geschwind, N. Disconnexion syndromes in animals and man. Brain. 88 (3), 585-644 (1965).
  40. Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 11 (1), 137-156 (1988).
  41. Mesulam, M. M. From sensation to cognition. Brain. 121 (6), 1013-1052 (1998).
  42. Mesulam, M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 28 (5), 597-613 (1990).
  43. Schmahmann, J. D., Pandya, D. N. . Fiber pathways of the brain. 8, 393-409 (2006).
  44. Bammer, R., Acar, B., Moseley, M. E. In vivo MR tractography using diffusion imaging. Eur J Radiol. 45 (3), 223-234 (2003).
  45. Catani, M., Howard, R. J., Pajevic, S., Jones, D. K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 17 (1), 77-94 (2002).
  46. Lin, C. P., Wedeen, V. J., Chen, J. H., Yao, C., Tseng, W. Y. I. Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage. 19 (3), 482-495 (2003).
  47. Bello, L., Acerbi, F., Giussani, C., Baratta, P., Taccone, P., Songa, V. Intraoperative language localization in multilingual patients with gliomas. Neurosurgery. 59 (1), 115-125 (2006).
  48. Bernstein, M. Subcortical stimulation mapping. J Neurosurg. 100 (3), 365 (2004).
  49. Ackermann, H., Riecker, A. The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Struct Funct. 214, 419-433 (2010).
  50. Krainik, A. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology. 62, 1323-1332 (2004).
  51. Ford, A., McGregor, K. M., Case, K., Crosson, B., White, K. D. Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage. 52, 1230-1237 (2010).
  52. Catani, M., Mesulam, M. M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C., Thompson, C. K., Thiebaut de Schotten, M., Dell’Acqua, F., Weintraub, S., Rogalski, E. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 136, 2619-2628 (2013).
  53. Rech, F., Herbet, G., Moritz-Gasser, S., Duffau, H. Disruption of bimanual movement by unilateral subcortical electrostimulation. Human Brain Mapping Annual Meeting. 35 (7), 3439-3445 (2014).
check_url/pt/55681?article_type=t

Play Video

Citar este artigo
Bozkurt, B., Yagmurlu, K., Middlebrooks, E. H., Cayci, Z., Cevik, O. M., Karadag, A., Moen, S., Tanriover, N., Grande, A. W. Fiber Connections of the Supplementary Motor Area Revisited: Methodology of Fiber Dissection, DTI, and Three Dimensional Documentation. J. Vis. Exp. (123), e55681, doi:10.3791/55681 (2017).

View Video