Этот протокол демонстрирует основанный на флуоресценции метод для визуализации сосудистой сети и для количественной оценки ее сложности у Xenopus tropicalis . Кровеносные сосуды можно визуализировать через несколько минут после введения флуоресцентного красителя в сердцебиение эмбриона после генетических и / или фармакологических манипуляций для исследования сердечно-сосудистого развития in vivo .
Кровеносные сосуды снабжают кислородом и питательными веществами всюду по телу, и формирование сосудистой сети находится под жестким контролем за развитием. Эффективная визуализация кровеносных сосудов in vivo и надежная количественная оценка их сложности являются ключевыми для понимания биологии и болезней сосудистой сети. Здесь мы предоставляем подробный метод визуализации кровеносных сосудов с коммерчески доступным флуоресцентным красителем, ацетилированным человеческим плазмом липопротеидом низкой плотности DiI комплекса (DiI-AcLDL) и количественной оценкой их сложности у Xenopus tropicalis . Кровеносные сосуды могут быть помечены простой инъекцией DiI-AcLDL в сердцебиение эмбриона, а кровеносные сосуды всего эмбриона могут быть отображены в живых или фиксированных эмбрионах. В сочетании с пертурбацией гена путем целенаправленного микроинъекции нуклеиновых кислот и / или применения ванны фармакологических реагентов роль гена или сигнального пути в развитии сосудов может быть inveСтигировали в течение одной недели, не прибегая к сложным генетически модифицированным животным. Из-за четко определенной венозной системы Xenopus и его стереотипного ангиогенеза, прорастание уже существующих сосудов, сложность судна могут быть количественно определены после экспериментов по возмущению. Этот относительно простой протокол должен служить легко доступным инструментом в различных областях сердечно-сосудистых исследований.
Васкулогенез, образование новых кровеносных сосудов из новорожденных эндотелиальных клеток и ангиогенез, образование новых сосудов из ранее существовавших сосудов, являются двумя различными процессами, которые формируют эмбриональную сосудистую сеть 1 . Любая дисрегуляция в этих процессах приводит к различным сердечным заболеваниям и структурным аномалиям сосудов. Более того, рост опухоли связан с неконтролируемым ростом сосудов. Таким образом, молекулярные механизмы, лежащие в основе васкулогенеза и ангиогенеза, являются объектом интенсивного исследования 2 .
Xenopus и данио являются привлекательными моделями позвоночных для исследований васкулогенеза и ангиогенеза по нескольким причинам. Во-первых, их эмбрионы небольшие; Поэтому относительно просто отобразить всю сосудистую сеть. Во-вторых, эмбриональное развитие происходит быстро; Требуется всего несколько дней для развития всей сосудистой сети, в течение которых развивающиеся васкулы Ature может отображаться. В-третьих, генетические и фармакологические вмешательства до и во время формирования сосудов легко выполнить, например, посредством микроинъекции антисмысловых морфолиновых нуклеотидов (МО) в развивающийся эмбрион или посредством применения ванн препаратов 3 , 4 , 5 .
Уникальное преимущество Xenopus над рыбой данио заключается в том, что эмбриологические манипуляции могут выполняться, потому что Xenopus следует стереотипным голообластическим расколам, и эмбриональная карта судьбы четко определена 6 . Например, можно создать эмбрион, в котором только одну боковую сторону генетически манипулируют путем инъекции антисмысловой МО к одной клетке на стадии с двумя клетками. Также возможно пересадить зачаток сердца от одного зародыша к другому, чтобы определить, выполняет ли ген свою функцию с помощью клеточного-внутреннего или экссудативного механизмаAss = "xref"> 7. Хотя эти методы в основном были разработаны у Xenopus laevis , который является аллотетраплаидным и поэтому не является идеальным для генетических исследований, их можно непосредственно применять к Xenopus tropicalis , близкородственному диплоидному виду 8 .
Один из способов визуализации сосудистой сети в живом эмбрион Xenopus заключается в введении флуоресцентного красителя для маркировки кровеносных сосудов. Ацетилированный липопротеин низкой плотности (AcLDL), меченный флуоресцентной молекулой, такой как DiI, является очень полезным зондом. В отличие от неацетилированного LDL, AcLDL не связывается с рецептором LDL 9, а эндоцитируется макрофагами и эндотелиальными клетками. Инъекция DiI-AcLDL в сердце живого животного приводит к специфическому флуоресцентному мечению эндотелиальных клеток, и вся сосудистая сеть может быть визуализирована с помощью флуоресцентной микроскопии в живых или фиксированных эмбрионах 4 .
Здесь мыПодробные протоколы визуализации и количественного определения кровеносных сосудов с использованием DiI-AcLDL у Xenopus tropicalis ( рис. 1 ). Мы представляем ключевые практические вопросы, примеры успешных и неудачных экспериментов. Кроме того, мы предоставляем простой метод количественного анализа сосудистой сложности, который может быть полезен при оценке влияния генетических и экологических факторов на формирование сосудистой сети.
Протокол, представленный здесь, был впервые разработан Али Х. Бриванлу и его коллегами для изучения событий развития во время формирования сосудов у Xenopus laevis 4 , но, как показано в этой рукописи, он может применяться к другим мелким животным. Инъекция красителя в сердце ?…
The authors have nothing to disclose.
Это исследование было вдохновлено работой Levine et al. , В котором описан этот экспериментальный метод и дано подробное описание развития сосудов у Xenopus laevis. Мы благодарим членов нашей лаборатории за их вклад. Это исследование было поддержано исследовательской инициативой Университета Йонсей в 2015 году (2015-22-0095) и Программой развития биомедицинских технологий Национального исследовательского фонда (NRF), финансируемой Министерством науки, ИКТ и планирования будущего ( NRF-2013M3A9D5072551)
35mm Petri dish | SPL | 10035 | Sylgard mold frame |
60mm Petri dish | SPL | 10060 | Embryo raising tray |
Borosilicate Glass | Sutter instrument | B100-50-10 | Needle for injection |
BSA | Sigma | A3059-10G | Coating reagent |
CaCl2 | D.S.P.GR Reagent | 0.1X MBS component | |
Coverslip | Superior | HSU-0111520 | For confocal imaging |
DiI-AcLDL | Thermo Fisher Scientific | L3484 | Vessel staining solution |
FBS | Hyclone | SH.30919.02 | For storage of testis |
Fiber Optical Illuminator | World Precision Instruments | Z-LITE-Z | Light |
Ficoll | Sigma | F4375 | Injection buffer |
Flaming/Brown Micropipette Puller | Sutter instrument | P-97 | Injection needle puller |
Forcep | Fine Science Tool | 11255-20 | For embryo hatching and needle tip cutting |
Glass Bottom dish | SPL | 100350 | For confocal imaging |
hCG | MNS Korea | For priming of frogs | |
HEPES | Sigma | H3375 | Buffering agent |
Incubator | Lab. Companion | ILP-02 | For raising embryos |
KCl | DAEJUNG | 6566-4400 | MBS component |
L15 medium | Gibco | 11415-114 | For storage of testis |
L-cysteine | Sigma | 168149-100G | De-jellying reagent |
MgSO4 | Sigma | M7506 | MBS component |
Microtube | Axygen | MCT-175-C-S | For storage of testis |
MS222 | Sigma | E10521 | Anesthetic powder |
NaCl | DAEJUNG | 7647-14-5 | MBS component |
NaOH | Sigma | S-0899 | pH adjusting reagent |
Paraformaldehyde | Sigma | P6148 | Fixatives |
PBS | BIOSESANG | P2007 | Buffer for imaging |
pH paper | Sigma | P4536-100EA | For confirming pH |
PICO-LITER INJECTOR | Waner instruments | PLI-100A | For injection |
Pin | Pinservice | 26002-10 | For incision |
Pinholder | Scitech Korea | 26016-12 | For incision |
Precision Stereo Zoom Binocular Microscope | World Precision Instruments | PZMIII | For visual screening |
Standard Manual Control Micromanipulator | Waner instruments | W4 64-0056 | For microinjection |
SYLGARD 184 Kit | Dow Corning | For DiI injection | |
Transfer pipette | Korea Ace Scientific Co. | YM.B78-400 | For eggs and embryo collection |