This article describes how the ion selectivity of channelrhodopsin is determined with electrophysiological whole-cell patch-clamp recordings using HEK293 cells. Here, the experimental procedure for investigating chloride selectivity of an anion-selective channelrhodopsin is demonstrated. However, the procedure is transferable to other channelrhodopsins of distinct selectivity.
Over the past decade, channelrhodopsins became indispensable in neuroscientific research where they are used as tools to non-invasively manipulate electrical processes in target cells. In this context, ion selectivity of a channelrhodopsin is of particular importance. This article describes the investigation of chloride selectivity for a recently identified anion-conducting channelrhodopsin of Proteomonas sulcata via electrophysiological patch-clamp recordings on HEK293 cells. The experimental procedure for measuring light-gated photocurrents demands a fast switchable – ideally monochromatic – light source coupled into the microscope of an otherwise conventional patch-clamp setup. Preparative procedures prior to the experiment are outlined involving preparation of buffered solutions, considerations on liquid junction potentials, seeding and transfection of cells, and pulling of patch pipettes. The actual recording of current-voltage relations to determine the reversal potentials for different chloride concentrations takes place 24 h to 48 h after transfection. Finally, electrophysiological data are analyzed with respect to theoretical considerations of chloride conduction.
Channelrhodopsins (ChR) are light-gated ion channels that occur in the eye spot of motile green algae, and serve as primary photosensors for phototaxis and phobic responses1. Since their first description in 20022, ChRs have paved the way for the emerging field of optogenetics and can be applied in a variety of excitable cells e.g. within skeletal muscles, the heart, or the brain3,4,5. Expression of ChRs in target cells results in light-controllable ion permeability of the respective cell. In a neuronal context, this allows activation6,7,8 or inhibition9,10 of action potential (AP) firing – depending on the conducted ion – with the spatial and temporal precision of light emphasizing how the ion selectivity of a ChR variant determines its optogenetic application.
The first discovered ChRs from Chlamydomonas reinhardtii and Volvox carteri are permeable to protons, but also to monovalent cations like sodium, potassium, and to a lesser extent to divalent cations such as calcium and magnesium11,12,13. Today, more than 70 natural cation-conducting channelrhodopsins (CCRs)14,15,16,17 and several engineered variants18,19,20 with different properties such as photocurrent size, spectral sensitivity, kinetics, and cation selectivity are available. Whereas in neuroscience, CCRs are used to activate cells and trigger APs, light-driven microbial pumps were the only available antagonists for silencing neurons for years. In 2014, two groups simultaneously showed that CCRs can be converted into anion-conducting channelrhodopsins (ACRs) by alteration of the polarity along the putative ion conducting pore via molecular engineering9,21. Subsequently, natural ACRs were identified in several cryptophyte alga22,23,24. Most importantly, light activation of ACRs mediates chloride currents in adult neurons allowing inhibition of neuronal activity at much lower light intensities than microbial pumps that only transport single charges per absorbed photon.
ChR activity can be directly addressed by electrophysiological patch-clamp recordings of light-induced currents in HEK293 cells. The patch-clamp technique was originally developed in the late 1970s25 and further improved by Hamill et al., allowing the recording of the entity of currents from a small cell (whole cell mode) with high current resolution and direct control of the membrane voltage26. Applied in cell culture, this technique provides accurate control of the ionic as well as electrical recording conditions, and enables studying ion selectivity along with the relative contribution of the ions to the total current. Here we exemplify the examination of ion selectivity for the anion-conducting channelrhodopsin of Proteomonas sulcata (PsACR1)22,23 via the recording of current-voltage relations under various extracellular chloride concentrations to prove high chloride conductance.
Figure 1: Patch-clamp Setup. (1) Light source, (2) optic fiber, (3) programmable shutter, (4) digitizer, (5) shutter driver, (6) amplifier, (7) perfusion system, (8) personal computer, (9) monitor, (10) faraday cage, (11) microscope stage, (12) perfusion inlet, (13) perfusion outlet, (14) recording chamber, (15) fluid level sensor, (16) bath electrode with agar bridge, (17) pipette holder, (18) headstage, (19) micromanipulator, (20) inverted microscope, (21) microscope lamp housing, (22) microscope lamp power supply, (23) water-filled U-tube , (24) three-way valve, (25) anti-vibration table, (26) CCD camera. (A) Photographs and (B) schematic representation of the setup. Please click here to view a larger version of this figure.
1. Setup Prior to Recordings
intra. | extra.1 | extra.2 | |
high chloride | high chloride | low chloride | |
c [mM] | c [mM] | c [mM] | |
Na-ASP | 0 | 0 | 140 |
NaCl | 110 | 140 | 0 |
KCl | 1 | 1 | 1 |
CsCl | 1 | 1 | 1 |
CaCl2 | 2 | 2 | 2 |
MgCl2 | 2 | 2 | 2 |
HEPES | 10 | 10 | 10 |
EGTA | 10 | 0 | 0 |
pH | 7.2 | 7.2 | 7.2 |
osmolarity | 290 mOsm | 320 mOsm | 320 mOsm |
Table 1: Ionic Composition of the Buffered Solutions. Composition of intracellular (intra.) and extracellular (extra.) buffers for chloride selectivity experiments in HEK cells. Abbreviations used: ethylene glycol tetraacetic acid (EGTA), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and aspartate (ASP). All concentrations are in mM.
2. Selectivity Measurements
3. Data Evaluation
Figure 2 shows representative results obtained from measurements following the described protocol. During illumination with green light, PsACR1 features a fast transient current which rapidly decays to a stationary current level. After light is switched off, photocurrents decay to zero within milliseconds (Figure 2A). Exchanging the extracellular chloride concentration causes a shift of the reversal potential that can be directly seen in the acquired photocurrent traces. Evaluation of reversal potentials from multiple measurements quantifies the dramatic reversal potential shift caused by the variation of the external chloride concentration (Figure 2B). Strikingly, measured reversal potentials directly correspond to calculated Nernst potentials for chloride (Figure 2C) confirming the high chloride selectivity of PsACR1.
Figure 2: Chloride selectivity of PsACR1. (A) Representative current traces of PsACR1 in HEK293 cells. Intracellular chloride concentration was kept at 120 mM, whereas extracellular concentration varied from 150 mM (green) to 10 mM (purple) chloride by partial replacement of NaCl with Na-aspartate. Holding potential was increased in 20 mV steps from -80 mV to +40 mV (LJP corrected). (B) Averaged current-voltage relations (n = 6 corresponding to the conditions in A). (C) Reversal potentials (center lines indicate medians, box limits indicate the 25th and 75th percentiles, whiskers extend 2-times the standard deviation and circles indicate single data points) extracted from the current-voltage relations. For the high chloride condition (green) the value was linearly interpolated between -20 mV and 0 mV holding potential, whereas the value was linearly extrapolated above +40 mV (purple, dashed line, panel B). Please click here to view a larger version of this figure.
Determination of reversal potentials at defined ionic and electrical conditions provides information about the ion species transported after light activation of ChRs. If exclusively one ion species is varied in a complex physiological medium and the obtained reversal potential shifts according to the theoretical Nernst potential, this ion species is the only transported one.
However, for ChRs, reversal potential shifts are usually less pronounced than expected from the Nernst equation due to permeability to different ionic species as well as competition among conducted ions. In this case, the situation becomes more complex and all potentially conducted ions must be exchanged separately demanding a variety of measuring solutions. In addition, most CCRs and the first artificial ACRs9,10,21 are conductive for protons but varying proton concentration requires an especially thorough analysis, since proton concentration may not only shift reversal potentials, but can also influence ion conductance9, photocurrents kinetics21,36 and spectral light sensitivity11,37 due to alteration of the hydrogen bonding networks, the protonation state of individual residues and secondary structure changes. Proton conductance can be addressed by reducing concentrations of all other potentially conducted ions such as Na+, Ca2+ or Cl– while keeping the pH constant in order to avoid protein changes mentioned above. Non-conducted substitutes are usually bulky, charged molecules like NMG+ for cations12, and gluconate, 2-(N-morpholino) ethanesulfonate (MES–) or aspartate for anions. Comparing reversal potentials in different ionic solutions then allows the calculation of the relative ion permeabilities at equilibrium conditions by the Goldman-Hodgkin-Katz voltage equation. Quantifying the exact contribution of different ions to net photocurrents considering ion competition beyond equilibrium conditions however, demands complex mathematical models12,38.
Knowing the composition of ions transported by ChRs helps to elucidate possible side effects resulting from ChR application especially in a neurophysiological context. For instance, prolonged ChR activation can cause intracellular acidification39 or conducted-Ca2+ may trigger synaptic release and second messenger pathways40. As cells are usually tightly packed within tissues, activation of microbial rhodopsins can not only influence the intracellular ion composition but also the extracellular lumen, thus affecting neighboring cells41.
Despite ion selectivity, other biophysical features of ChRs like photocurrent amplitudes, inactivation, spectral or light sensitivity and kinetic properties are often of interest to conduct, design and interpret experiments involving optogenetic techniques. Some of these properties can also be determined from the protocol above as described elsewhere18,37,42. To investigate light sensitivity of the ChR expressing cell, light intensity can be varied by adjusting the power of the light source or by attenuating the activation light with neutral density filters. To obtain the spectral sensitivity, a polychromatic light source is needed and intensities have to be adjusted to equal photon flux and bandwidth for all wavelengths. High intensity spectra only resemble absorption spectra of the photoreceptor if short light pulses or laser flashes are used, otherwise adaptation phenomena and photochemical back reactions can occur. The recovery from partially inactivated to fully active ChR (overall photocycle turnover time) can be probed by applying a double pulse protocol with increasing dark intervals between the two light pulses. The biophysical properties of ChRs discussed above are important for choosing a suitable ChR matching the experimental needs40.
Deriving these biophysical properties by electrophysiological techniques directly resembles protein function which is barely covered by spectroscopic methods. After successful establishment of voltage-clamp measurements, the technique can be combined with protein engineering approaches like site-directed mutagenesis9,11,43,44, helix-shuffling37,45, introduction of targeting sequences46 or fusion with other proteins41,47. This has increased the molecular knowledge about ChRs and their mode of operation and created a high diversity of ChR variants with altered kinetics, conductance, spectral sensitivity and ion selectivity40.
The authors have nothing to disclose.
We thank Maila Reh, Tharsana Tharmalingam and especially Altina Klein for excellent technical assistance. This work was supported by the German Research Foundation (DFG) (SFB1078 B2, FOR1279 SPP1665 to P. H.) and the Cluster of Excellence Unifying Concepts in Catalysis, UniCat, BIG-NSE (J.V.) and E4 (P.H.).
HEK293 cells | Sigma Aldrich | 85120602 | Human embryonic kidney cells |
Retinal | Sigma Aldrich | R2500 | all-trans retinal |
FuGENE HD | Promega | E2312 | Transfection reagent |
DMEM | Biochrome | FG 0445 | Dulbecco's Modified Eagle Medium |
Agarose | Roth | 3810 | Agar bridges |
CaCl2 | Roth | 5239 | CaCl2 2H2O |
CsCl | Biomol | 2452 | |
EGTA | Roth | 3054 | |
FBS | Biochrome | S0615 | Cell culture |
Glucose | Roth | HN06 | D(+)-Glucose |
KCl | Roth | 6781 | |
MgCl2 | Roth | 2189 | MgCl2 6H2O |
NaCl | Roth | 3957 | |
NMG | Sigma Aldrich | M2004 | N-Methyl-D-glucamine |
Na-Aspartate | Sigma Aldrich | A6683 | L-Aspartic acid sodium salt monohydrate |
Citric acid | Roth | 6490 | |
AgeI | ThermoFischerScientific | ER1462 | Restriction enzyme |
XhoI | ThermoFischerScientific | ER0695 | Restriction enzyme |
NheI | ThermoFischerScientific | ER0975 | Restriction enzyme |
XL1Blue E.coli/ | Agilent Technologies | 200249 | Chemocompetent E.coli |
Kanamycin | Roth | T832 | |
Lysogeny broth medium | Roth | X964 | |
Agar-Agar | Roth | 6494 | Agar plates |
Plasmid purification kit | Marchery-Nagel | 740727.25 | |
Penicilin/Streptomycin | Biochrome | A 2213 | Cell culture |
Poly-D-lysine hydrobromide | Sigma Aldrich | P6407-5MG | Cover slip coating |
Microforge | Custom made | Fire polishing | |
Serological pipettes | TPP | Different sizes | |
Clean bench | Kojair | Biowizard SL130 | |
Stirrer | IKA | RCT classic | |
Silver wire | Science Products | AG-T25; AG-T10 | Electrodes, 0.64 mm (bath); 0.25 mm (electrode) |
pH-meter | Knick | 765 Calimetric | |
Osmometer | Vogel | OM 815 | |
Microscope | Carl Zeiss | ID03 | Fire polishing |
CO2 incubator | Binder | CB150 | |
Cell culture dishes | TPP | 93040 | 34 mm internal diameter |
Cover slips | Roth | P232 | 15 mm diameter |
Thermometer | Rössel Messtechnik | MTM12 | |
Beamsplitter | Chroma | 21011 | 90/10 transmission |
Pipette holder | ALA Scientific Instruments | PPH-1P-AXU-0-1.5 | |
Headstage | Molecular Devices | CV203BU | |
Amplifier | Molecular Devices | AxoPatch200B | |
Digitizer | Molecular Devices | DigiData1400 | Digital analog converter |
Lightsource | TILL Photonics | Polychrome V | Set to 540 nm full intensity |
Microscope | Carl Zeiss | Axiovert 100 | |
Shutter | Vincent Associates | VS25 | |
Shutter driver | Vincent Associates | VCM-D1 | |
Glass capilarries | Warner Instruments | G150F-3 | Boresilicate capillaries with fire polished ends OD 1.5 mm ID 0.86 mm |
Micropipette puller | Sutter Instruments | P1000 | |
Bath handler | Lorenz Messgerätebau | MPCU | |
Tripleband filterset | Chroma | 69008 | Fluorescence filter ECFP/EYFP/mCherry |
CCD camera | Watec | Wat-221SCCD | |
Optometer | Gigahertz Optik | P9710 | Measure light intensities |
Objective | Carl Zeiss | 421462-9900-000 | W Plan-Apochromat 40X/1.0 DIC |
Micromanipulator | Scientifica | PatchStar | |
Recording chamber | Custom made | ||
Power supply | Manson | HCS-3202 | Avoids electrical noise from microscope built-in power supply |
Vibration isolated table | Newport | M-VW-3636-OPT-01 | |
Faraday cage | Custom made or any commercial matching table | ||
Hoses | Any comercial; e.g. Roth | Different sizes and materials for bath handling and application of pipette pressure; agar bridges | |
Linear shaker | Sunlab Instruments | SU 1000 | |
Liquid junction potential calculator | Molecular Devices or directly from Peter H. Barry | Program is included in the Clampex aquisition software or can be obtained from p.barry@unsw.edu.au | |
Data acquisition software | Molecular Devices | Clampex 10.X | |
Data evaluation software | Molecular Devices | Clampfit 10.X | |
PsACR1 | GenBank or Addgene | KF992074.1 or Addgene plasmid #85465 | Gene encoding for PsACR1 |
Amplifier guide | Molecular Devices | The Axon Guide |