Summary

通过定期行驶冷却光学被困超冷费米气体

Published: March 30, 2017
doi:

Summary

We present a parametric driving method to cool an ultracold Fermi gas in a crossed-beam optical dipole trap. This method selectively removes high-energy atoms from the trap by periodically modulating the trap depth with frequencies that are resonant with the anharmonic components of the trapping potential.

Abstract

We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

Introduction

在过去的二十年中,各种冷却技术已经被开发用于产生玻色-爱因斯坦凝聚(BEC)和从热原子蒸气1,2,3,4,5简并费米气体(DFG)。 BEC和DFG是存在于非常低的温度下物质的新颖阶段,通常是比绝对零度的温度的百万分之一,远远低于那些通常在地球上或在空间中。为了获得这样低的温度下,最冷却方法依赖于降低捕获电位蒸发冷却的原子。然而,该方案降低也降低了原子的碰撞率,当气体到达量子政权6这限制了冷却效率。在本文中,我们提出了一种“驱逐”方法来蒸发冷却超冷费米气体中的ODT而不降低陷阱深度。此方法是基于我们最近参数冷却7,示出相比于降低方案7,8,9几个优点的研究。

参数方案的关键思想是采用的交叉光束ODT,这使得邻近所述俘获电位的边缘的较热原子感觉下俘获的频率比在中心较冷原子的非谐。此非谐性允许调节在频率谐振与高能量原子俘获电位时被选择性地从阱排出的热原子。

参数冷却的实验方案需要接近退化温度预冷却的互不影响的费米气体。为了实现该协议,声光调制器(AOM)来调制由controllin捕获光束的强度克的调制频率,深度和时间。要验证的冷却效果,原子云是由时间 – 飞行时间(TOF)的吸收成像,其中谐振激光束照射原子云和吸收阴影由电荷耦合器件(CCD)照相机捕获探测。云性质,如原子数,能量和温度,由列密度确定。为了表征的冷却效果,我们测量云能量上的各种调制倍的依赖性。

Protocol

注意:此协议需要包括以下设备的家庭的内置超冷原子设备:两个外部腔二极管激光器(ECDL),锁定设定为ECDL偏移频率锁定10,光纤激光器的ODT的激光强度调制的AOM ,一个射频(RF)天线系统具有源发生器和功率放大器,吸收成像系统用CCD照相机,用于定时序列和数据采集(DAQ),用于成像处理和数据分析的计算机程序的计算机程序,一对电磁铁的MOT和偏置磁场,以及超高真空…

Representative Results

使用这种协议中,我们研究了的调制时间用优化调制频率和振幅,这两者已在我们以前的出版物7中确定的参数冷却的依赖性。我们首先准备在两个最低超精细状态6个 Li原子的互不影响的费米气体与T / 五六 ≈1.2的温度。这里,T F =(6N)1/3ħω/ K B = 5.2μK与原子数N =每?…

Discussion

我们提出的用于交叉光束光学阱的非相互作用费米气体的冷却参数的实验协议。此协议的关键步骤包括:首先,将光学捕获费米气体需要通过降低陷阱深度接近冷却至退化温度。第二,调制频率选择即谐振与俘获电位的非调谐组件。第三,俘获光束的强度被调制,以冷却原子云并测量云能量对调制时间的依赖性。

与收集降低方案相比,所述参数冷却方案提供了一种选择性的?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Ji Liu and Wen Xu for involving in the experimental setup. Le Luo is a member of the Indiana University Center for Spacetime Symmetries (IUCSS). This work was supported by IUPUI and IUCRG.

Materials

500 mW 671 nm ECDL Toptica TA Pro Quantity:1
35 mW 671 nm ECDL Toptica DL-100 Quantity:1
671 nm AOM Isomet 1206C Quantity:3
671 nm AOM Driver Isomet 630C-110 Quantity:3
100 W 1064 nm CW laser IPG photonics YLR-100-1064-LP Quantity:1
1064 nm AOM IntraAction ATM-804DA6B  Quantity:1
1064 nm AOM Driver IntraAction ME-805EH  Quantity:1
Arbitrary Function Generator Agilent  33120A Quantity:3
Digital I/O Board United Electronic Industries PD2-DIO-128 Quantity:1
System Design Platform National Instruments LabVIEW Quantity:1
Analog Voltage Output Device Measurement Computing USB-3104 Quantity:1
CCD Camera Hamamatsu Orca R2 Quantity:1
Arbitrary Pulse Generator Quantum Composer 9618+ Quantity:1
Analog Voltage Output Device Measurement Computing USB-3104 Quantity:1
20 A power supply Quantity:1
10 A power supply Quantity:1
120 A power supply Quantity:2
Cooling Fans Quantity: depends on apparatus design
671 nm Mirrors Quantity: depends on apparatus design
671 nm Half-wave Plate Quantity: depends on apparatus design
671 nm Quarter-wave Plate Quantity: depends on apparatus design
500 mW Beam Shutter Quantity: depends on apparatus design
671 nm Lenses Quantity: depends on apparatus design
Faraday Isolator Quantity: 2, one for each ECDL
671 nm Polarizing Beam Splitter Quantity: depends on apparatus design
Photodetector Thorlabs SM05PD1A Quantity:1
Multiplexer  Analog Devices ADG409 Quantity: 1
Multiplexer  Analog Devices ADG408 Quantity: 2
1064 nm plano-concave lens Quantity:1 for beam reducer
1064 nm plano-convex lens Quantity:1 for beam reducer 
1064 nm Mirrors Quantity: depends on apparatus design
1064 nm Half-wave Plates Quantity: depends on apparatus design
1064 nm Lenses Quantity: depends on apparatus design
1064 nm Thin Film Polarizer Quantity:1
100 W, 1064 nm Beam Dump Quantity:1
100 W, 1064 nm Power Meter Quantity:1
RF Function Generator Rigol DG4162 Quantity:1
RF Power Amplifier Mini-Circuits ZHL-100W-GAN+ Quantity:1

Referências

  1. Petrich, W., Anderson, M. H., Ensher, J. R., Cornell, E. A. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74 (17), 3352 (1995).
  2. Ketterle, W., Druten, N. J. V., Bederson, B., Walther, H., et al. Evaporative cooling of trapped atoms. Advances in Atomic, Molecular, and Optical Physics. 37, 181-236 (2003).
  3. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B., Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science. 291 (5513), 2570-2572 (2001).
  4. DeMarco, B., Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science. 285 (5434), 1703-1706 (1999).
  5. Granade, S. R., Gehm, M. E., O’Hara, K. M., Thomas, J. E. All-optical production of a degenerate Fermi gas. Phys. Rev. Lett. 88 (12), 120405 (2002).
  6. Luo, L., et al. Evaporative cooling of unitary Fermi gas mixtures in optical traps. New J. Phys. 8 (9), 213 (2006).
  7. Li, J., Liu, J., Xu, W., de Melo, L., Luo, L. Parametric cooling of a degenerate Fermi gas in an optical trap. Phys. Rev. A. 93 (4), 041401 (2016).
  8. Poli, N., Brecha, R. J., Roati, G., Modugno, G. Cooling atoms in an optical trap by selective parametric excitation. Phys. Rev. A. 65 (2), 021401 (2002).
  9. Kumakura, M., Shirahata, Y., Takasu, Y., Takahashi, Y., Yabuzaki, T. Shaking-induced cooling of cold atoms in a magnetic trap. Phys. Rev. A. 68 (2), 021401 (2003).
  10. Li, J., et al. Sub-megahertz frequency stabilization of a diode laser by digital laser current modulation. Appl. Opt. 54 (13), 3913-3917 (2015).
  11. Hamamatsu Photonics Deutschland GmbH. . HiPic user manual. , (2016).
  12. Luo, L. . Entropy and superfluid critical parameters of a strongly interacting Fermi gas [Ph.D. thesis]. , (2008).
  13. Ries, M. . A magneto-optical trap for the preparation of a three-component Fermi gas in an optical lattice [Diploma thesis]. , (2010).
  14. Bartenstein, M., et al. Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94 (10), 103201 (2005).
  15. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., Hadzibabic, Z. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110 (20), 200406 (2013).
  16. Bruce, G. D., Bromley, S. L., Smirne, G., Torralbo-Campo, L., Cassettari, D. Holographic power-law traps for the efficient production of Bose-Einstein condensates. Phys. Rev. A. 84 (5), 053410 (2011).
  17. Roy, R., Green, A., Bowler, R., Gupta, S. Rapid cooling to quantum degeneracy in dynamically shaped atom traps. Phys. Rev. A. 93 (4), 043403 (2016).
  18. Bukov, M., D’Alessio, L., Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64 (2), 139-226 (2015).

Play Video

Citar este artigo
Li, J., de Melo, L. F., Luo, L. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving. J. Vis. Exp. (121), e55409, doi:10.3791/55409 (2017).

View Video