Summary

使用主神经球文化研究纤毛

Published: April 14, 2017
doi:

Summary

初级纤毛是在神经祖细胞增殖,神经细胞的分化,和成人神经元功能至关重要的。这里,我们描述研究ciliogenesis和信号蛋白使用初级神经球培养物在神经干/祖细胞和分化的神经元纤毛的贩卖的方法。

Abstract

The primary cilium is fundamentally important for the proliferation of neural stem/progenitor cells and for neuronal differentiation during embryonic, postnatal, and adult life. In addition, most differentiated neurons possess primary cilia that house signaling receptors, such as G-protein-coupled receptors, and signaling molecules, such as adenylyl cyclases. The primary cilium determines the activity of multiple developmental pathways, including the sonic hedgehog pathway during embryonic neuronal development, and also functions in promoting compartmentalized subcellular signaling during adult neuronal function. Unsurprisingly, defects in primary cilium biogenesis and function have been linked to developmental anomalies of the brain, central obesity, and learning and memory deficits. Thus, it is imperative to study primary cilium biogenesis and ciliary trafficking in the context of neural stem/progenitor cells and differentiated neurons. However, culturing methods for primary neurons require considerable expertise and are not amenable to freeze-thaw cycles. In this protocol, we discuss culturing methods for mixed populations of neural stem/progenitor cells using primary neurospheres. The neurosphere-based culturing methods provide the combined benefits of studying primary neural stem/progenitor cells: amenability to multiple passages and freeze-thaw cycles, differentiation potential into neurons/glia, and transfectability. Importantly, we determined that neurosphere-derived neural stem/progenitor cells and differentiated neurons are ciliated in culture and localize signaling molecules relevant to ciliary function in these compartments. Utilizing these cultures, we further describe methods to study ciliogenesis and ciliary trafficking in neural stem/progenitor cells and differentiated neurons. These neurosphere-based methods allow us to study cilia-regulated cellular pathways, including G-protein-coupled receptor and sonic hedgehog signaling, in the context of neural stem/progenitor cells and differentiated neurons.

Introduction

初级纤毛是基于微管的动态亚细胞区室,其用作在胚胎神经元发育1,2期间协调细胞信号传导途径,包括音猬因子(Shh)途径感官天线,并且在成年神经元功能3条块亚细胞信号传导,4 。这些信号途径,如修补5的Shh受体的部件;该途径激活平滑(SMO)6;和Gpr161 7,孤儿G蛋白偶联受体(GPCR),所述Shh通路负调节,定位于纤毛以动态方式。多的GPCR据报道,本地化的纤毛神经元在大脑中7,8,9,10 </SUP>,11,12,13,14,15,16。在纤毛和纤毛生成的信号传导途径的缺陷影响多种组织和被统称为ciliopathies 17,18,19。所述ciliopathy疾病谱频繁包括神经发育缺陷,如颅面畸形20,21,22。另外,在丘脑神经元初级纤毛调节饱腹感的中心通路,和缺陷导致中心性肥胖23,在综合征ciliopathies如巴比Biedel综合征24镜像肥胖。此外,神经肽受体纤毛信号调节CENTR人饱腹感通路11,14。如在海马神经元生长抑素受体3腺苷酸环化酶III(ACIII)和GPCR的睫状定位导致新物体识别缺陷和记忆缺陷25,26和平行缺乏睫状完整性27。纤毛生成的信令的发展方面是紧密联系在一起组织动态平衡;特别是,纤毛是在小脑28,29从颗粒祖细胞而产生的Shh亚型髓母细胞瘤的进展重要。因此,纤毛胚胎,产后,和成人的神经元的发育和功能的过程中发挥重要作用。

神经干细胞(NSCs)驻留在脑室下区侧脑室(SVZ),海马的齿状回的颗粒下区,并且在哺乳动物中30,31,32下丘脑第三脑室的脑室区。神经干细胞是多能,具有自我更新的能力,是大脑发育和再生医学30重要。在SVZ最神经干细胞是静态和具有一个孤初级纤毛的是,在许多情况下,伸出到侧脑室33。通过各种受体的定位,诱导下游细胞应答,特别是有关的Shh,TGFβ,和受体酪氨酸激酶途径2,34,35,36中的初级纤毛信号。由于初级纤毛延伸进入侧脑室,假设初级纤毛检测在脑脊液(CSF),以激活神经干细胞的细胞因子37 </s了>。最近的研究表明Shh信号传导途径和初级纤毛是用于干细胞在修复的激活和再生多种组织中,包括嗅上皮,肺,肾和38,39,40,41是至关重要的。然而,通过该CSF的机制与神经干细胞进行通信,并且主是否纤毛参与是未知的。在贴壁培养神经干细胞的纤毛;本地化Shh通路部件,诸如SMO和Gpr161在纤毛;并响应嘘42。因此,神经干细胞可以作为研究Shh通路的重要模型系统,纤毛贩卖和神经元分化的途径。此外,从神经干细胞分化的神经元也可用于睫状贩卖测定。

神经球构成从neura的增殖所产生的自由浮动的细胞群的在特定的生长因子和非粘性表面43,44存在下生长升干/祖细胞。神经球来研究在正常发育和疾病31,45,46,47的神经干/祖细胞用作体外培养模型一样重要。在这里,我们描述了用于培养神经干/祖细胞和分化成神经元/神经胶质基于神经球的测定。我们特别强调信号元件为神经干/祖细胞和分化的神经元( 图1)的纤毛的贩卖。相对于培养原代神经元,神经球都比较容易培养,是适合于多次传代和冻融循环,并且可以经历分化成神经元/神经胶质。重要的是,我们确定了神经球源性神经干/祖细胞和分化的神经元在纤毛培养和定位信号有关在这些隔室纤毛功能的分子。基于神经球培养方法可作为在神经干细胞和分化的神经元研究ciliogenesis和纤毛贩卖的理想模型系统。

Protocol

1.从成年小鼠脑中的神经球分离异氟醚过量安乐死的成年小鼠(约2个月)。仔细检查鼠标已停止呼吸而死亡后立即解剖。 用剪刀,使正中切口,打开颅骨。取出大脑。 放置在冷PBS中脑在冰上的10cm培养皿。按照全安装解剖的方法来获得从侧脑室48 SVZ。 放置侧脑室到1.5mL管中,在PBS中添加0.05%胰蛋白酶-EDTA的500μL,并在水浴中温育该管15分钟,在37℃。 …

Representative Results

从在NSC培养基中的SVZ细胞铺板一周后,神经球漂浮观察到( 图2A)。球体的尺寸50和200微米之间变化。为了检查,如果球体从神经干/祖细胞衍生的,神经球铺板到PLL-和层粘连蛋白包被的在NSC培养基盖玻片2天。然后,他们被免疫染色对神经干/祖细胞标志物,巢。需要有两天,使球体附着于盖玻片并成长为单层细胞。单层细胞为巢蛋白( 图2B)是阳…

Discussion

在这里,我们描述了一个方法来生成和维护从成年小鼠SVZ神经球文化。是关于文化的几个相关要点如下。首先,球体的尺寸通常50之间 – 200微米。根据我们的经验,当一个神经球得到直径大于300微米,传代的最佳时机已经错过。这些较大的球体包含在核心死细胞。其次,由于神经球通常用于研究神经干/祖细胞,它使用EGF和碱性FGF(bFGF)的,以保持这些细胞的干性是很重要的。因此,因子诱导分?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Work in S.M.’s laboratory is funded by recruitment grants from CPRIT (R1220) and NIH (1R01GM113023-01).

Materials

12 mm round cover glass Fisherbrand 12-545-80 
24 well plate Falcon 353047
4 % paraformaldehyde Affymetrix 19943
50 ml tube Falcon 352098
95 mm X 15 mm petri dish, slippable lid Fisherbrand FB0875714G 10 cm dish
70 µm cell strainer Falcon 352350
Alexa Fluor 488 Affinipure Donkey Anti-Rabbit IgG (H+L) Jackson Immunoresearch 711-545-152 Donkey anti Rabbit, Alexa 488 secondary antibody
Arl13B, Clone N295B/66 Neuromab AB_11000053
B-27 Supplement (50X), serum free ThermoFisher Scientific 17504001 B27
Centrifuge Thermo scientific ST 40R
Cryogenic vial Corning 430488
DAPI Sigma D9542-10MG
Deoxyribonuclease I from bovine pancrease Sigma D5025-15KU Dnase I
Dimethyl sulfoxide Sigma D8418-100ML DMSO
Disposable Vinyl Specimen Molds Sakura Tissue-Tek Cryomold 4565 10 mm X 10 mm X 5 mm
Dulbecco's Phosphate Buffered Saline 10×, Modified, without calcium chloride and magnesium chloride, liquid, sterile-filtered, suitable for cell culture Sigma D1408-500ML PBS
Dumont #5 Forceps Fine science tools 11254-20
FBS  Sigma F9026-500ML
Fluoromount-G solution Southern Biotech 0100-01 mounting solution
GFAP DAKO Z0334
Goat anti Mouse IgG1 Secondary Antibody, Alexa Fluor 555 conjugate ThermoFisher Scientific A-21127 Goat anti Mouse IgG1, Alexa 555 secondary antibody
Goat anti Mouse IgG2a Secondary Antibody, Alexa Fluor 555 conjugate ThermoFisher Scientific A-21137 Goat anti Mouse IgG2a, Alexa 555 secondary antibody
Gpr161 home made N/A
human bFGF Sigma F0291 FGF
hemocytometer Hausser Scientific 0.100 mm deep improved neubauer
Isothesia Henry Schein NDC 11695-0500-2 Isofluorane
Laminin from Engelbreth-Holm-Swarm Sarcoma basement membrane Sigma L2020 Laminin
L-Glutamine (200mM) Sigma G7513
Lipofectamine 3000 Transfection Reagent ThermoFisher Scientific L3000
Mr. Frosty Nalgene  5100-0036
N-2 supplement (100X) ThermoFisher Scientific 17502001 N2
Neurobasal medium Gibco 21103-049
Normal Donkey Serum Jackson ImmunoResearch 017-000-121
OCT compound Sakura Tissue-Tek 4583 OCT
Penicillin-Streptomycin Sigma P4333-100ML
Poly-L-lysine Sigma P4707
Recombinant human EGF protein, CF R and D systems 236-EG-200 EGF
Scissor Fine science tools 14060-10
Superfrost plus microscope slide Fisher scientific 12-550-15 slides
Triton X Bio-Rad 161-0407
Trypsin-EDTA solution (10X) Sigma T4174-100 Trypsin
COSTAR 6 Well Plate, With Lid Flat Bottom Ultra-Low Attachment Surface Polystyrene, Sterile Corning 3471 ultra-low binding 6 well plate
β-tubulin III Covance MMS-435P TUJ1

Referências

  1. Mukhopadhyay, S., Rohatgi, R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol. 33, 63-72 (2014).
  2. Goetz, S. C., Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 11, 331-344 (2010).
  3. Guemez-Gamboa, A., Coufal, N. G., Gleeson, J. G. Primary cilia in the developing and mature brain. Neuron. 82, 511-521 (2014).
  4. Louvi, A., Grove, E. A. Cilia in the CNS: the quiet organelle claims center stage. Neuron. 69, 1046-1060 (2011).
  5. Rohatgi, R., Milenkovic, L., Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science. 317, 372-376 (2007).
  6. Corbit, K. C., et al. Vertebrate Smoothened functions at the primary cilium. Nature. 437, 1018-1021 (2005).
  7. Mukhopadhyay, S., et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell. 152, 210-223 (2013).
  8. Hilgendorf, K. I., Johnson, C. T., Jackson, P. K. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol. 39, 84-92 (2016).
  9. Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C., Mykytyn, K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell. 19, 1540-1547 (2008).
  10. Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C., Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA. 105, 4242-4246 (2008).
  11. Loktev, A. V., Jackson, P. K. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329 (2013).
  12. Marley, A., Choy, R. W., von Zastrow, M. GPR88 reveals a discrete function of primary cilia as selective insulators of GPCR cross-talk. PLoS One. 8, e70857 (2013).
  13. Marley, A., von Zastrow, M. DISC1 regulates primary cilia that display specific dopamine receptors. PLoS One. 5, e10902 (2010).
  14. Omori, Y., et al. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control. PLoS One. 10, e0128422 (2015).
  15. Koemeter-Cox, A. I., et al. Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci USA. 111, 10335-10340 (2014).
  16. Brailov, I., et al. Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res. 872, 271-275 (2000).
  17. Hildebrandt, F. .. ,. ,. T. .. ,. &. a. m. p. ;. K. a. t. s. a. n. i. s. ,. N. .., Benzing, T., Katsanis, N. Ciliopathies. N Engl J Med. 364, 1533-1543 (2011).
  18. Waters, A. M., Beales, P. L. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 26, 1039-1056 (2011).
  19. Badano, J. L., Mitsuma, N., Beales, P. L., Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 7, 125-148 (2006).
  20. Novarino, G., Akizu, N., Gleeson, J. G. Modeling human disease in humans: the ciliopathies. Cell. 147, 70-79 (2011).
  21. Brugmann, S. A., Cordero, D. R., Helms, J. A. Craniofacial ciliopathies: A new classification for craniofacial disorders. Am J Med Genet A. 152A (12), 2995-3006 (2010).
  22. Valente, E. M., Rosti, R. O., Gibbs, E., Gleeson, J. G. Primary cilia in neurodevelopmental disorders. Nat Rev Neurol. 10, 27-36 (2014).
  23. Davenport, J. R., et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol. 17, 1586-1594 (2007).
  24. Zaghloul, N. A., Katsanis, N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 119, 428-437 (2009).
  25. Einstein, E. B., et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci. 30, 4306-4314 (2010).
  26. Wang, Z., Phan, T., Storm, D. R. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci. 31, 5557-5561 (2011).
  27. Berbari, N. F., et al. Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One. 9, e106576 (2014).
  28. Han, Y. G., Alvarez-Buylla, A. Role of primary cilia in brain development and cancer. Curr Opin Neurobiol. 20, 58-67 (2010).
  29. Han, Y. G., et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. 15, 1062-1065 (2009).
  30. Lim, D. A., Alvarez-Buylla, A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harbor perspectives in biology. 8, (2016).
  31. Shimada, I. S., LeComte, M. D., Granger, J. C., Quinlan, N. J., Spees, J. L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 32, 7926-7940 (2012).
  32. Mich, J. K., et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife. 3, e02669 (2014).
  33. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell stem cell. 3, 265-278 (2008).
  34. Pedersen, L. B., Mogensen, J. B., Christensen, S. T. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci. , (2016).
  35. Christensen, S. T., Clement, C. A., Satir, P., Pedersen, L. B. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 226, 172-184 (2012).
  36. Clement, C. A., et al. TGF-beta signaling is associated with endocytosis at the pocket region of the primary cilium. Cell reports. 3, 1806-1814 (2013).
  37. Taverna, E., Gotz, M., Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol. 30, 465-502 (2014).
  38. Joiner, A. M., Green, W. W., McIntyre, J. C. Primary Cilia on Horizontal Basal Cells Regulate Regeneration of the Olfactory Epithelium. J Neurosci. 35, 13761-13772 (2015).
  39. Inaba, M., Buszczak, M., Yamashita, Y. M. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature. 523, 329-332 (2015).
  40. Peng, T., et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature. 526, 578-582 (2015).
  41. Rauhauser, A. A., et al. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol: Renal Physiol. 309, F770-F778 (2015).
  42. Chavez, M., et al. Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. Dev Cell. 34, 338-350 (2015).
  43. Lobo, M. V., et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J. Histochem. Cytochem. 51, 89-103 (2003).
  44. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  45. Pastrana, E., Silva-Vargas, V., Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell stem cell. 8, 486-498 (2011).
  46. Nishino, J., Kim, I., Chada, K., Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 135, 227-239 (2008).
  47. Shimada, I. S., Peterson, B. M., Spees, J. L. Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke. 41, e552-e560 (2010).
  48. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp. , (2010).
  49. Coles-Takabe, B. L., et al. Don’t look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells. 26, 2938-2944 (2008).
  50. Pal, K., et al. Smoothened determines beta-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 212, 861-875 (2016).
  51. Caspary, T., Larkins, C. E., Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell. 12, 767-778 (2007).
  52. Bangs, F. K., Schrode, N., Hadjantonakis, A. K., Anderson, K. V. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 17, 113-122 (2015).
  53. Berbari, N. F., Bishop, G. A., Askwith, C. C., Lewis, J. S., Mykytyn, K. Hippocampal neurons possess primary cilia in culture. J Neurosci Res. 85, 1095-1100 (2007).
  54. Paridaen, J. T., Wilsch-Brauninger, M., Huttner, W. B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell. 155, 333-344 (2013).
  55. Kiprilov, E. N., et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol. 180, 897-904 (2008).
  56. Mukhopadhyay, S., et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180-2193 (2010).
  57. Ishikawa, H., Marshall, W. F. Efficient live fluorescence imaging of intraflagellar transport in mammalian primary cilia. Methods Cell Biol. 127, 189-201 (2015).
check_url/pt/55315?article_type=t

Play Video

Citar este artigo
Shimada, I. S., Badgandi, H., Somatilaka, B. N., Mukhopadhyay, S. Using Primary Neurosphere Cultures to Study Primary Cilia. J. Vis. Exp. (122), e55315, doi:10.3791/55315 (2017).

View Video