Мы представляем три новых и более эффективных протоколов дифференцировки человеческих индуцированных плюрипотентных стволовых клеток в кардиомиоциты, эндотелиальные клетки и клетки гладкой мускулатуры и способ доставки, который улучшает приживление пересаженных клеток путем объединения инъекции клеток с патч-опосредованной доставки цитокина.
Человеческие индуцированные плюрипотентные стволовые клетки (hiPSCs) должны быть полностью дифференцируются в специфические типы клеток перед введением, но обычные протоколы для дифференциации hiPSCs в кардиомиоциты (hiPSC-КМВ), эндотелиальные клетки (hiPSC-ЭКС), и клетки гладкой мускулатуры (СМЦ) часто ограничена низким выходом, чистотой, и / или плохой стабильности фенотипической. Здесь мы представляем новые протоколы для генерации hiPSC-КМВ, -ECs и -SMCs, которые могут быть значительно более эффективными, чем традиционные методы, а также способ объединения инъекции клеток с цитокинами, содержащий патч, созданный по месту введения. Пластырь улучшает как удерживание инжектированных клеток, путем герметизации след иглы, чтобы предотвратить клетки от вытесняют из миокарда и выживаемости клеток, освободив инсулиноподобного фактора роста (ИФР) в течение длительного периода. В свином модели повреждений миокарда после ишемии-реперфузии, скорость приживления была более чем в два раза больше, когдаКлетки вводили с цитокинами, содержащий пластырь по сравнению с клетками без пластыря, и лечение обоими клетками и пластыря, но не с одним только клетками, было связано со значительным улучшением функции сердца и размера инфаркта.
Человеческие индуцированные плюрипотентные стволовые клетки (hiPSCs) являются одними из наиболее перспективных агентов для регенеративной клеточной терапии, потому что они могут быть дифференцированы в потенциально неограниченного круга и количества клеток, которые не отторгаются иммунной системой пациента. Тем не менее, их способность к самовоспроизведению и дифференциации может также привести к образованию опухоли и, следовательно, hiPSCs должны быть полностью дифференцируются в специфические типы клеток, такие как кардиомиоциты (КМВ), эндотелиальные клетки (ПАУ) и клеток гладкой мускулатуры (СМЦ ), перед введением. Одним из наиболее простых и наиболее распространенных способов введения клеток является прямым интрамиокардиальной инъекции, но количество трансплантированных клеток, которые привиты нативным ткани миокарда является исключительно низким. Большая часть этого истирания может быть связано с цитотоксической среды ишемизированной ткани; Однако, когда мышиные эмбриональные стволовые клетки (ЭСК) вводили непосредственно в миокарде неповрежденных сердца, оолько ~ 40% из 5 миллионов клеток доставленных были сохранены в течение 3-5 ч 1, что свидетельствует о том , что значительная часть вводимых клеток покинул сайт администрации, возможно , потому , что они были вытеснены через игольное дорожки с помощью высоких давлений , создаваемых в ходе инфаркт сокращение.
Здесь мы представляем новые и значительно более эффективные методы для генерации hiPSC полученных из кардиомиоцитов (hiPSC-КМВ) 2, эндотелиальные клетки (hiPSC-ЭКС) 3, и клетки гладкой мускулатуры (СМЦ) 4. Следует отметить, что этот протокол hiPSC-SMC является первым , чтобы имитировать широкий спектр морфологических и функциональных характеристик , наблюдаемых в соматической SMCs 5, направляя клетки к преимущественно синтетическим или сократительной фенотипа SMC. Мы также предлагаем способ доставки клеток, что повышает скорость приживления клеток, инъецированных путем создания цитокинами, содержащей фибрин-рATCH над местом инъекции. Пластырь по-видимому, улучшить и удержания клеток, путем герметизации след иглы, чтобы предотвратить клетки от выхода из миокард, и выживаемость клеток, освободив инсулиноподобного фактора роста (ИФР) в течение по крайней мере трех дней.
Повышение доходности / Чистота hiPSC-CMs
Обычные протоколы для дифференциации человеческих стволовых клеток в CMs часто ограничены низким выходом и чистотой; например, только 35-66% ЭСК-CMs получают путем разделения перколла и формирования сердечной тела выражается медленную тяж…
The authors have nothing to disclose.
This work was supported by US Public Health Service grants NIH RO1s HL67828, HL95077, HL114120, and UO1 HL100407-project 4 (to JZ), an American Heart Association Scientist Development Grant (16SDG30410018) and a Research Voucher Award from University of Alabama at Birmingham Center for Clinical and Translational Science (to WZ).
Protocol 1 | |||
mTeSR1 medium | Stem cell technologies | 5850 | |
Growth-factor-reduced matrigel | Corning lifescience | 356231 | |
Y-27632 | Stem cell technologies | 72304 | |
B27 supplement, serum free | Fisher Scientific | 17504044 | |
RPMI1640 | Fisher Scientific | 11875-119 | |
Activin A | R&D | 338-AC-010 | |
BMP-4 | R&D | 314-BP-010 | |
bFGF | R&D | 232-FA-025 | |
Collagenase IV | Fisher Scientific | NC0217889 | |
Hanks Balanced Salt Solution (Dextrose, KCl, KH2PO4, NaHCO3, NaCl, Na2HPO4 anhydrous) | Fisher Scientific | 14175079 | |
Fetal Bovine Serum | Fisher Scientific | 10438018 | |
6-well plate | Corning Lifescience | 356721 | |
10cm dish | Corning Lifescience | 354732 | |
Cell incubator | Panasonic | MCO-18AC | |
Materials | Company | Catalog Number | Comments |
Protocol 2 | |||
Versene | Fisher Scientific | 15040066 | |
Fibrinogen | Sigma-Aldrich | F8630-5g | |
Thrombin | Sigma-Aldrich | T7009-1KU | |
EMB2 medium | Lonza | CC-3156 | |
VEGF | ProSpec-Tany | CYT-241 | |
EPO | Life Technologies | PHC9431 | |
TGF-ß | Peprotech | 100-21C | |
EGM2-MV medium | Lonza | CC-4147 | |
SB-431542 | Selleckchem | S1067 | |
CD31 | BD Bioscience | BDB555445 | |
CD144 | BD Bioscience | 560411 | |
15 mL centrifuge tube | Fisher Scientific | 12565269 | |
Eppendorff Centrifuge | Eppendorf | 5702R | |
Materials | Company | Catalog Number | Comments |
Protocol 3 | |||
CHIR99021 | Stem cell technologies | 720542 | |
PDGF-ß | Prospec | CYT-501-10ug | |
Materials | Company | Catalog Number | Comments |
Protocol 4 | |||
Olive oil | Sigma-Aldrich | O1514 | |
Gelatin | Sigma-Aldrich | G9391 | |
Acetone | Sigma-Aldrich | 179124 | |
Ethanol | Fisher Scientific | BP2818100 | |
Glutaraldehyde | Sigma-Aldrich | G5882 | |
Glycine | Sigma-Aldrich | G8898 | |
IGF | R&D | 291-G1-01M | |
Bovine serum albumin | Fisher Scientific | 15561020 | |
Heating plate | Fisher Scientific | SP88850200 | |
Water bath | Fisher Scientific | 15-462-10Q | |
Materials | Company | Catalog Number | Comments |
Protocol 5 | |||
CaCl2 | Sigma-Aldrich | 223506 | |
-aminocaproic acid | Sigma-Aldrich | A0420000 | |
MEM medium | Fisher Scientific | 12561-056 | |
Syringe | Fisher Scientific | 1482748 | |
Anesthesia ventilator | Datex-Ohmeda | 47810 | |
Anesthesia ventilator | Ohio Medical | V5A | |
Defibrillator | Physiol Control | LIFEPAK 15 | |
1.5T MRI | General Electric | Signa Horizon LX | |
7T MRI | Siemens | 10018532 | |
Gadolinium Contrast Medium (Magnevist) | Berlex | 50419-188-02 | |
2-0 silk suture | Ethilon | 685H | |
3-0 silk suture | Ethilon | 622H | |
3-0 monofilament suture | Ethilon | 627H |