Summary

Простой Одношаговый Вскрытие Протокол целом монтажа подготовки взрослых<em> Drosophila</em> Мозги

Published: December 01, 2016
doi:

Summary

Взрослых Drosophila мозг является ценным система для изучения нейронной цепи, высшие функции мозга, и сложные расстройства. Эффективный метод рассекать всю мозговую ткань от маленькой головы летучей будет способствовать мозга на основе исследования. Здесь мы опишем простой, один шаг рассечение протокол мозга взрослого человека с хорошо сохранившейся морфологии.

Abstract

Существует растущий интерес к использованию дрозофилы для моделирования мозга дегенеративных заболеваний человека, карта нейронные схемотехника в взрослом мозге, и изучение молекулярной и клеточной основы высших функций мозга. Препарат целого монтирование мозга взрослого человека с хорошо сохранившейся морфологии имеет решающее значение для таких всего головного мозга на основе исследований, но может быть технически сложным и занимает много времени. Этот протокол описывает простой в освоении, один шаг рассечение подход головки взрослых мух менее чем за 10 секунд, сохраняя при этом неповрежденный мозг, прикрепленный к остальной части тела, чтобы облегчить последующие этапы обработки. Процедура помогает удалить большую часть глаза и трахеи тканей, обычно связанные с мозгом, который может повлиять на более позднем этапе формирования изображения, а также места, меньший спрос на качество рассекает щипцов. Кроме того, мы опишем простой метод, который позволяет удобно листать смонтированных образцов мозга на покровное, что очень важно для работы с изображениями с обеих сторон бдожди с аналогичной интенсивности и качества сигнала. В качестве примера протокола, мы представим анализ дофаминергических (DA) нейронов в головном мозге взрослых WT (вес 1118) мух. Высокая эффективность метода рассечение делает его особенно полезным для крупномасштабных исследований мозга взрослых на основе у дрозофилы.

Introduction

Модель организма дрозофилы, широко известный как дрозофилы, уже давно ценится за его изящными генетических инструментов, короткие репродуктивные времена, и высоко консервативны молекулярных и клеточных путей. Плодовая муха была успешно использована для рассекают основных сигнальных путей, структурирование механизмы многоклеточных организмов, а также механизмы , лежащие в основе развития нейронов, функции и заболевания 1,2. С учетом последних достижений в области маркировки клеток и визуализации технологий, плодовая мушка мозг стал особенно мощным в тонкой отображения нейронной цепи и в рассекает молекулярной и клеточной основы высших мозговых функций, таких как обучение и память, и циркадный ритм 1,3, 4,5,6,7,8.

Одним особым преимуществом системы Drosophila является его относительно небольшой размер, что позволяет целом монтажа подготовку и обследование головного мозга с помощью обычного соединения или конфокальной микроскопии. Тхиs функция позволяет подробные анатомические и функциональный анализ нейронной цепи, или даже один нейрон, на клеточном и субклеточном уровнях, в контексте всей ткани мозга, таким образом, обеспечивая как целостный взгляд на исследуемый объект и его точную геометрию в целом головной мозг. Однако, учитывая довольно миниатюрные размеры мозга, он также представляет собой сложную техническую задачу в эффективно рассекает неповрежденный ткани мозга из защитного экзоскелет головки случае во взрослой мухи. Различные эффективные и относительно простые методы рассечение были описаны подробно, которые обычно включают тщательное и ступенчатые удаление корпуса головки и связанные с ним ткани и глаза, трахеи, и жир из мозга надлежащего 9, 10. Эти микрохирургические методы рассечение часто устанавливают достаточно жесткие требования к качеству диссекции пинцетом, опираясь на щипцов с прекрасными хорошо выровненных советов, которые могут быть легко повреждены. Более того, как рассеченные мозг часто separatред от остальной части тела, мозг может быть легко потеряны во время последующих окрашивания и моечных процессов из-за их малых размеров и их прозрачности в буфере обработки. Здесь мы описываем относительно простой и легкий в освоении, один шаг протокол рассечение для мозга взрослого человека, который держит расчлененный мозги, прикрепленные к туловищу. Процесс рассечение часто легко убирает большую часть мозга ассоциированных тканей, таких как глаз и трахеи и снижает спрос на хорошее качество рассечение щипцов.

Кроме того, при визуализации мозга под флуоресцентным микроскопом или составного конфокальный микроскоп, сторона мозга, который находится вдали от флуоресцентного источника света часто дает более слабый сигнал и менее четкие изображения из-за толщины мозга целом монтажа. Здесь мы также опишем простой способ установки, позволяющий легко листать образцов мозга, что позволяет удобно визуализации обеих сторон мозга с аналогичным сигналом Intensiти и качества.

В качестве доказательства правильности концепции для применения этого метода для изучения мозга взрослого человека, мы исследовали далее присутствие DA нейронов в мозге W 1118 мух; генотип , который часто используется в качестве родительской линии для получения трансгенных мух и контроль дикого типа во многих исследованиях Drosophila.

Protocol

1. Решения, используемые для мозга Вскрытие и иммунофлуоресцентного окрашивания Рассеките взрослого летать мозги в искусственной спинномозговой жидкости (ACSF): 119 мМ NaCl, 26,2 мМ NaHCO 3, 2,5 мМ KCl, 1 мМ NaH 2 PO 4, 1,3 мМ MgCl 2 и 10 мМ глюкозы. Перед использованием Газ ACSF с 5% CO …

Representative Results

На рисунке 1 показаны основные процедуры для взрослых рассечение мозга, как описано выше , 2 и 3 представляют собой репрезентативные образы 3-дневного возраста WT. (Генотип: W 1118) для взрослых летать мозги, которые были costained с антитело…

Discussion

С ростом интереса с помощью взрослых дрозофилы мозга для изучения заболеваний головного мозга человека, нейронной цепи, и высшие функции мозга, необходимо разработать простые и быстрые методы , чтобы получить неповрежденные летать мозги для всего-монтировки анализы, что особенно…

Declarações

The authors have nothing to disclose.

Acknowledgements

Мы признаем, г-н EnEs Mehmet, г-жа Kiara Андраде, г-жа Пилар Родригес, Крис Квок, и г-жу Danna сура гафир за их огромную поддержку проекта.

Materials

w*; parkΔ21/TM3, P{GAL4-Kr.C}DC2, P{UAS-GFP.S65T}DC10, Sb1 Bloomington Drosophila Stock Center 51652 Balancer was switched to TM6B
PBac{WH}parkf01950 Exelixis at Harvard Medical School f01950 Balancer was switched to TM6C
NaCl Fisher Scientific S640-500
Sodium Bicarbonate (NaHCO3 Fisher Scientific 02-003-990
Potassium Chloride (KCl) Fisher Scientific BP366-500
Sodium phosphate, monobasic monohydrate (NaHCO3) Fisher Scientific 02-004-198
Magnesium Chloride (MgCl2) Fisher Scientific 02-003-265
D-Sorbitol Sigma-Aldrich S1876-500G Replaces glucose
Calcium chloride dihydrate (CaCl2) Sigma-Aldrich C5670-500G
EMD Millipore Durapore PVDF Membrane Filters: Hydrophilic: 0.22µ Pore Size Fisher Scientific GVWP14250
Formalin Solution, 10% (Histological) Fisher Scientific SF98-20
Potassium Phosphate, Dibasic, Powder, Ultrapure Bioreagent Fisher Scientific 02-003-823
Tween 20 Fisher Scientific BP337-500
Excelta Precision Tweezers with Very Fine Points Fisher Scientific 17-456-055 Protocol does not require very fine points. 
Anti-Tyrosine Hydroxylase Antibody Pel-Freez Biologicals P40101
Rat-Elav-7E8A10 anti-elav The Developmental Studies Hybridoma Bank Clone 7E8A10
Goat anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate ThermoFisher Scientific A-21247
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 594 conjugate ThermoFisher Scientific A-11037
DAPI Solution (1 mg/mL) ThermoFisher Scientific 62248
Propyl gallate powder Sigma-Aldrich P3130-100G
Glycerol ACS reagent, ≥99.5% Sigma-Aldrich G7893-500ML
Zeiss Axioimager Z1 Zeiss Quote
Zeiss Apotome.2 Zeiss Quote
Zen lite software Quote

Referências

  1. Wangler, M. F., Yamamoto, S., Bellen, H. J. Fruit flies in biomedical research. Genética. 199, 639-653 (2015).
  2. Bellen, H. J., Yamamoto, S. Morgan’s legacy: fruit flies and the functional annotation of conserved genes. Cell. 163, 12-14 (2015).
  3. Aso, Y., et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife. 3, 04577 (2014).
  4. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114-1125 (2001).
  5. Yamagata, N., et al. Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci U S A. 112, 578-583 (2015).
  6. Nern, A., Pfeiffer, B. D., Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A. 112, 2967-2976 (2015).
  7. Waddell, S. Neural Plasticity: Dopamine Tunes the Mushroom Body Output Network. Curr Biol. 26, 109-112 (2016).
  8. Wolff, T., Iyer, N. A., Rubin, G. M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. J Comp Neurol. 523, 997-1037 (2015).
  9. Sweeney, S. T., Hidalgo, A., de Belle, J. S., Keshishian, H. Dissection of adult Drosophila brains. Cold Spring Harb Protoc. 2011, 1472-1474 (2011).
  10. Wu, J. S., Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 1, 2110-2115 (2006).
  11. Mao, Z., Davis, R. L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits. 3, 5 (2009).
  12. White, K. E., Humphrey, D. M., Hirth, F. The dopaminergic system in the aging brain of Drosophila. Front Neurosci. 4, 205 (2010).
  13. Yang, Y., et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A. 103, 10793-10798 (2006).
  14. Greene, J. C., et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 100, 4078-4083 (2003).
  15. Whitworth, A. J., et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci U S A. 102, 8024-8029 (2005).
  16. Pesah, Y., et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development. 131, 2183-2194 (2004).
  17. Trinh, K., et al. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci. 30, 5525-5532 (2010).
  18. Kim, K., Kim, S. H., Kim, J., Kim, H., Yim, J. Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease. J Biol Chem. 287, 6628-6641 (2012).
check_url/pt/55128?article_type=t

Play Video

Citar este artigo
Tito, A. J., Cheema, S., Jiang, M., Zhang, S. A Simple One-step Dissection Protocol for Whole-mount Preparation of Adult Drosophila Brains. J. Vis. Exp. (118), e55128, doi:10.3791/55128 (2016).

View Video