אנו מתארים הליך איתור אלמנטים כימיים נוכח באתרו בתוך התאים של האדם, כמו גם שלהם כימות במבחנה . השיטה הוא מתאים היטב לכל סוג התא, שימושי במיוחד עבור בדיקות כימיות כמותית של תאים בודדים בעקבות במבחנה חשיפה חלקיקי תחמוצת מתכת.
טכניקות אנליטיות מיקרו מבוסס על יסוד כימי הדמיה לאפשר לוקליזציה כימות של ההרכב הכימי ברמה התאית. הם מציעים אפשרויות חדשות עבור אפיון מערכות החיים, מתאימים במיוחד עבור איתור, לוקליזציה של לכימות הנוכחות של חלקיקי תחמוצת מתכת הן הביולוגיים והן את הסביבה. אכן, כל הטכניקות הללו עומד בדרישות רלוונטי מבחינת רגישות (i) (מ 1 עד 10 µg.g-1 של המוני יבש), והרזולוציה המרחבית של טווח מיקרומטר (ii) ו- (iii) רכיבים מרובים זיהוי. לאור מאפיינים אלה, microbeam יסוד כימי הדמיה ניתן בעוצמה משלימים טכניקות הדמיה שגרתיות כגון אופטי ומיקרוסקופיה זריחה. פרוטוקול זה מתאר כיצד לבצע ניתוח microprobe גרעיני תאים בתרבית (U2OS) נחשפים טיטניום דיאוקסיד חלקיקים. התאים חייב לצמוח, להיחשף ישירות בעל מדגם שתוכנן במיוחד נעשה שימוש במיקרוסקופ אופטי, בשלבי ניתוח microprobe גרעינית. מים עמוקים-הקפאה קריוגני קיבעון של הדגימות שומרת על הארגון הסלולר והן את התפלגות יסוד כימי. Microprobe גרעיני סימולטני ניתוח (סריקה שידור יון מיקרוסקופ, מסות backscattering רתרפורד, החלקיקים הנגרמת שקרינת x) המבוצעת על הדגימה מספק מידע אודות הסלולר צפיפות, התפלגות מקומי יסודות כימיים, כמו גם את תוכן סלולרי חלקיקים. יש צורך הולך וגדל כלים אנליטיים כאלה בתוך הביולוגיה, במיוחד בהקשר המתעוררים של ננו טוקסיקולוגיה, ננו-רפואה אשר חייב להיות העמיקה הבנתנו של אינטראקציות בין חלקיקים דגימות ביולוגיות. בפרט, כפי microprobe גרעיני ניתוח אינה דורשת חלקיקים כדי להיות מתויג, ננו-חלקיק abundances הם לכימות עד לרמת תא בודד בקרב אוכלוסיה תא, ללא תלות במצבן משטח.
הומאוסטזיס הסלולר נקבעת על ידי ספיגת שליטה, הטמעה, לוקליזציה תאיים של יסודות קורט שונים (יונים, מתכות, חומרים אורגניים נדיפים אקסוגני). רכיבים אלה הם לעתים קרובות בצורה של עקבות, אבל בכל זאת עשוי להיות בעל השפעה ניכרת בפיזיולוגיה המערכת. לפיכך, המחקר של ביוכימיה התא במצבים רגילים והן הפתולוגיים/הדגיש היא צעד המפתח לקראת הבנה כללית של המנגנונים התאיים מטבולית. לכן, התפתחות טכניקות הדמיה אנליטיים שמאפשר חקירת תאיים abundances כימיים, הארגון מבניים, פונקציות מטבוליות הקשורות שלהם הופך להיות הכרחי. שיטות מעט מאוד מסוגלים לספק בחיי עיר כמותיים פיסת מידע הנוגע לטבעו כימי הכולל של דגימה נתון. מלבד שיטות ניתוח דגימות בצורה גורפת, ניתוחים בחיי עיר לשקול דגימות ביולוגיות ב integrality שלהם מבלי לאבד מידע בנפח גדול ומבניים, ובכך לשמר שלהם כימיקלים המרכיבים אותה (יסודות קורט, יונים), חלבונים. יתר על כן, כמו ננוטכנולוגיה להמשיך לפתח, הדמיה משופר ושיטות אנליטיות ניטור סביבתי את המשקל הסלולר יהיה צורך להתבונן ולכמת ננו-אובייקט התנהגויות ואינטראקציות. 1
חלקיקים (NPs) הוגדרו כאובייקטים מפגין הממד פנים אחד לפחות ב- טווח 1 ל- 100 ננומטר. 2 בשל תכונותיהם physicochemical מסוים, NPs נמצאים בשימוש נרחב בתעשייה. NPs מועסקים ביו-יישומים, ננו-רפואה. 3 , 4 למרות המאפיינים physicochemical רבים של NPs, הם עשויים ליצור כמה סיכונים של השפעות שליליות על בריאות האדם והסביבה. סיכונים אלה יכולה להיגרם על ידי חשיפות ממושכות והן חוזרות ברמות ריכוז שונים, זה לא עדיין בבירור הקימה. 5 , 6 , 7 , 8 בפרט, גורלו של NPs בתוך התאים ואת התגובות הסלולר משויכים הם, עד כה, לא לגמרי תיאר. . זאת בחלקו בשל המחסור שיטות המאפשרות זיהוי, כימות של NPs למביטה בתא יחיד. 9
כלים אנליטיים קלאסית המשמש להערכת המינון הסלולר של חלקיקים הם microscopies, ספקטרומטר מסה (MS), מצמידים inductively פלזמה MS (ICP-MS)10,11 ו כרומטוגרפיה נוזלית ש-MS (LC-MS), אבל הם מספקים רק מידע שימושי על הסולם מאקרוסקופית. אף אחד מהם לא יכול לספק הערכה מדויקת של התוכן NPs subcellular או ההתפלגות NPs ללא השימוש בשיטות fractionation. הערכה שיטתית של המנה-תגובה ולכן בלתי אפשרי באמצעות שיטות אלה, לעומת שיטות בהתבסס על ספקטרוסקופיה אטומית כגון גרעיני microprobe ניתוח12,13, סינכרוטרון רנטגן פלורסצנטיות מיקרוסקופ14 , ויון משני ספקטרומטר מסה (SIMS). 15 , 16 שיטות אלה הינם מעניינים במיוחד הם משלימים את תצפיותיו באמצעות מיקרוסקופ פלורסצנטיות, בייחוד כאשר NPs לא יכול להיקרא עם מולקולות פלורסנט נלמדים ובכך במצבם המקורי. במידה מסוימת, אפילו כאשר NPs מורכבים עם fluorophores, (i) כימות נשאר קשה כי רמת תיוג לכל NP אינו ידוע (ii) שינוי כימי של המשטח NP רשאית לשנות תפוצתו הסלולר.
במאמר זה, אנו מתמקדים שיטה המבוססת על שילוב של טכניקות microprobe גרעיני מכוון הדמיה של מורפולוגיה הרכב היסודות של דגימות ביולוגיות בלה מז’ור, מינור, ולאתר ריכוזים.
ניתוח microprobe גרעיני מוכיחה להיות מתאים במיוחד עבור המידה של יסודות כימיים קורט ברקמות ביולוגיות. רזולוציה לרוחב הקורה (0.3 עד 1 מיקרומטר) והן רגישות בזיהוי יסוד כימי (מ 1 עד 10 µg.g-1 יבש מסה) מתאימים היטב מחקרים ברמה התאית. Microprobe גרעיני טכניקות מבוססים על זיהוי החלקיקים (פוטונים, אלקטרונים, יונים) הנפלטים אחרי קרן יון (ריצה בדרך כלל על תהליך אנרגיות) אינטראקציה עם אטומים נוכח במדגם. אינטראקציות המתרחשים בתאים הם בעיקר: 1) עירור/יינון של אטומים ואחריו של פליטת פוטונים לאחר אטומים להחזיר למצב היסוד שלהם; ו- 2) דיפוזיה של חלקיקים נכנסות מובילים כדי לשנות את האנרגיה שלהם, כיוון. מדידת חלקיקים הנפלטים אנרגיה allowsthe זיהוי של אטומים המעורבים באינטראקציה. כדי לבצע מיפוי של רכיבי, microbeam יון שוב ושוב נסרק על פני מדגם, לעיתים קרובות על פני שטח של-100 מיקרומטר 1002 המכיל מספר תאים. חלקיקים הנפלטים מזוהים, האנרגיה שלהם נרשם לכל תפקיד קרן. מיון החלקיקים בהתאם למיקום קרן, ולכן זיהוי המבנה אחראי הפליטה של חלקיקים כאלה היא המטרה של הטיפול נתונים. כאן, אנו מתארים בדיוק גישה המבוססת על קרינה פלואורסצנטית מיקרוסקופ וניתוח microprobe גרעיני כדי לאתר, כמו גם לכמת NPs אקסוגני על המאזניים הסלולר וסלולריות תת, במטרה לחקור את ההשלכות של NP אינטראקציות עם החיים מערכות. במיוחד נתמקד ההזדמנויות המוצעים על ידי שיטה זו מבחינת בחיי עיר כימות של אגרגטים טיטניום דיאוקסיד חלקיקים (TiO2 NPs) ברמת subcellular.
אנו מתארים שיטה המספקת מידע שימושי מעבר מה אפשרי עם טכניקות הדמיה אחרות, במיוחד ברמה subcellular. בנוסף יכולת הדמיה, ניתוח microprobe גרעיני מציע גם אפשרויות של כימות של יסודות כימיים הזנת בהרכב של דגימה ביולוגית. בשנת העבודה הנוכחית, אנו למד אוכלוסיות תאים אנושיים, ממוקד עד הניתוח של אזור שבחרת עניי…
The authors have nothing to disclose.
אנו מודים Borderes סרג בימוי ועריכה של הוידאו. הסוכנות למחקר לאומי צרפתי תומך בתוכנית מחקר TITANIUMS (ANR CES 2010, n ° CESA 009 01). ה-CNRS הקהילה האירופית כפעילות בשילוב מסופקים “תמיכה של הציבור, תעשייתי המחקר באמצעות יון קרן טכנולוגיה (הרוח) תחת EC החוזה n ° 227012. עבודה זו היא נתמכה על ידי מארי קירי פעולות – רשתות ההכשרה הראשונית (ITN) כמו שילוב פעילות תמיכה לתארים מתקדמים מחקר עם התמחות בתעשייה, הדרכה מצויינות”(ספרייט, D1.3) תחת חוזה EC מס 317169. Sud Ouest גרנד את C’NANO של אקיטן אזור תמיכה את תוכנית המחקר רעלים-ננו (n ° 20111201003), את תוכנית המחקר POPRA (n ° 14006636-034).
Cell culture | |||
U2OS | ATCC, LGC STANDARDS | ATCC HTB-96 | |
Medium MCCOY 5A w/o L-Glutamine | Dominique DUTSCHER | L0211-500 | |
FBS 500 mL | Dominique DUTSCHER | 500105U | |
Penicillin/Streptomycin | ThermoFisher Scientific | 11548876 | |
L-Glutamine 200 mM, 100 mL | Invitrogen | 25030024 | |
Geneticin, 20 mL | ThermoFisher Scientific | 10092772 | |
Trypsin-EDTA 0.25% (v/v) 500 mL | ThermoFisher Scientific | 11570626 | |
Viromer Red | Lipocalyx | VR-01LB-01 | |
Matrix-roGFP Plasmid | AddGene | #49437 | |
Hoechst 33342 | ThermoFisher Scientific | H3570 | Handle with care |
NPs preparation | |||
TiO2 P25 AEROXIDE | Degussa/Evonik | ||
Tetramethylrhodamine isothiocyanate (TRITC) | SIGMA-ALDRICH | T3163 | Surface modification of NPs |
Sample preparation | |||
Polycarbonate foil | Goodfellow | CT301020 | |
Polyether Ether Ketone support (PEEK) | Matechplast | A-239-4047 | |
Ethanol, ACS absolute | SIGMA-ALDRICH | 02860-6x1L | |
Chlorform, Anhydrous, 99% | SIGMA-ALDRICH | 372978-1L | Caution toxic |
Formvar 100 g | Agar Scientific | AGR1201 | Harmful. Use in a concentration of 10 µg per mL of chloroform |
NaOH | SIGMA-ALDRICH | S5881-500G | |
Sample fixation | |||
Powder, 95% Paraformaldehyde | SIGMA-ALDRICH | 158127-500G | Caution toxic. Use as a 4% solution in PBS |
PBS (pH 7.4, without Ca2+ and Mg2+) | ThermoFisher Scientific | 11503387 | |
Prolong Gold Antifade Reagent | ThermoFisher Scientific | P36934 | |
Triton X-100 | SIGMA-ALDRICH | 93443 | Harmful |
Sample cryofixation | |||
Liquid nitrogen | air liquids sante | Harmful | |
Methylbutane >=99% | SIGMA-ALDRICH | M32631-1L | Caution toxic |
Aluminium transfer plate | Home-made | ||
Distilled and deionized water | Home-made | Produced in the laboratory using the Barnstead Smart2Pure system | |
Parafilm | VWR | 52858-000 | |
Equipment | |||
Barnstead Smart2Pure | ThermoFisher Scientific | 50129870 | |
Biosafety bench, class II | ThermoFisher Scientific | MSC-Advantage | |
TC20 automated cell counter | Biorad | 145-0102SP | |
Counting slides 2 wells | Biorad | 1450016 | |
PIPS detector, 25 mm2, 12 keV energy resolution @5.5 MeV | Canberra | PD25-12-100AM | |
High-resolution Si (Li) solid-state detector,145-eVenergy resolution, @Mn-Kα | Oxford Instruments | ||
Everhart-Thornley type secondary electron detector (SED) | Orsay Physics | 1-SED | |
XRF Calibration Standard sodium or Chlorine as NaCl | Micromatter | 34381 | |
XRF Calibration Standard Magnesium as MgF2 | Micromatter | 34382 | |
XRF Calibration Standard Aluminium as Al metal | Micromatter | 34383 | |
XRF Calibration Standard Silicon as SiO | Micromatter | 34384 | |
XRF Calibration Standard Sulfur as CuSx | Micromatter | 34385 | |
XRF Calibration Standard Calcium as CaF2 | Micromatter | 34387 | |
XRF Calibration Standard Titanium as Ti metal | Micromatter | 34388 | |
XRF Calibration Standard Iron as Fe metal | Micromatter | 34389 | |
Sonicator 750W | Sonics Materials | 11743619 | |
3MM microprobe | Bioblock scientific | 220-05 | |
Lyophilizer in vacuum | Elexience | EK3147 | |
Optical microscope Zeiss AxioObserver Z1 | Carl Zeiss MicroImaging, GmbH | 431006-9901 | |
Motorized stage xy | Carl Zeiss MicroImaging, GmbH | 432031-9902 | |
EC Plan-Neofluar 20X, NA 0.50 Ph2 M27 objective | Carl Zeiss MicroImaging, GmbH | 420351-9910 | |
Plan-Apochromat 63X, NA 1,40 Ph3M27 objective | Carl Zeiss MicroImaging, GmbH | 420781-9910 | |
Zeiss filterset 02 | Carl Zeiss MicroImaging, GmbH | 488002-9901 | |
Zeiss filterset 38HE | Carl Zeiss MicroImaging, GmbH | 489038-9901 | |
Zeiss filterset 31 | Carl Zeiss MicroImaging, GmbH | 000000-1031-350 | |
Chemical fume hood | Erlab | Captair SD321 | |
Particle accelerator | HVEE | singletron | |
Software | |||
ImageJ software | National Institutes of health, USA | ImageJ 1.51 | |
SimNRA software | Max-Planck-Institut für Plasmaphysik, Germany | SIMNRA 6.06 | |
Gupix software | Guelph university, Canada | GUPIXWIN 2.2.4 |